
Robotics System Toolbox™

Reference

R2015b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ Reference
© COPYRIGHT 2015 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

March 2015 Online only New for Version 1.0 (R2015a)
September 2015 Online only Revised for Version 1.1 (R2015b)

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

iii

Contents

Classes — Alphabetical List
1

Functions — Alphabetical List
2

Methods — Alphabetical List
3

Blocks — Alphabetical List
4

1

Classes — Alphabetical List

1 Classes — Alphabetical List

1-2

robotics.BinaryOccupancyGrid class
Package: robotics

Create occupancy grid with binary values

Description

BinaryOccupancyGrid creates a 2-D occupancy grid object, which you can use to
represent and visualize a robot workspace, including obstacles. The integration of sensor
data and position estimates create a spatial representation of the approximate locations
of the obstacles.

Occupancy grids are used in robotics algorithms such as path planning. They are also
used in mapping applications, such as for finding collision-free paths, performing
collision avoidance, and calculating localization. You can modify your occupancy grid to
fit your specific application.

Each cell in the occupancy grid has a value representing the occupancy status of that cell.
An occupied location is represented as true (1) and a free location is represented as
false (0).

The two coordinate systems supported are world and grid coordinates. The world
coordinates origin is defined by GridLocationInWorld, which defines the bottom-left
corner of the map. The number and size of grid locations are defined by the Resolution.
Also, the first grid location with index (1,1) begins in the top-left corner of the grid.

Construction

map = robotics.BinaryOccupancyGrid(width,height) creates a 2-D binary
occupancy grid representing a work space of width and height in meters. The default
grid resolution is one cell per meter.

map = robotics.BinaryOccupancyGrid(width,height,resolution) creates a
grid with resolution specified in cells per meter. The map is in world coordinates by
default. You can use any of the arguments from previous syntaxes.

map = robotics.BinaryOccupancyGrid(rows,cols,resolution,'grid')

creates a 2-D binary occupancy grid of size (rows,cols).

 robotics.BinaryOccupancyGrid class

1-3

map = robotics.BinaryOccupancyGrid(p) creates a grid from the values in matrix
p. The size of the grid matches the size of the matrix, with each cell value interpreted
from its location in the matrix. p contains any numeric or logical type with zeros (0) and
ones (1).

map = robotics.BinaryOccupancyGrid(p,resolution) creates a
BinaryOccupancyGrid object with resolution specified in cells per meter.

Input Arguments
width — Map width
double in meters

Map width, specified as a double in meters.
Data Types: double

height — Map height
double in meters

Map width, specified as a double in meters.
Data Types: double

resolution — Grid resolution
1 (default) | double in cells per meter

Grid resolution, specified as a double in cells per meter.
Data Types: double

p — Input occupancy grid
matrix of ones and zeros

Input occupancy grid, specified as a matrix of ones and zeros. The size of the grid
matches the size of the matrix. Each matrix element corresponds to an occupied location
(1) or free location (0).

Properties
GridSize — Number of rows and columns in grid
two-element horizontal vector

1 Classes — Alphabetical List

1-4

Number of rows and columns in grid, stored as a two-element horizontal vector of the
form [rows cols]. This value is read only.

Resolution — Grid resolution
1 (default) | scalar in cells per meter

Grid resolution, stored as a scalar in cells per meter. This value is read only.
Data Types: double

XWorldLimits — Minimum and maximum values of x-coordinates
two-element vector

Minimum and maximum values of x-coordinates, stored as a two-element horizontal
vector of the form [min max]. These values indicate the world range of the x-coordinates
in the grid. This value is read only.

YWorldLimits — Minimum and maximum values of y-coordinates
two-element vector

Minimum and maximum values of y-coordinates, stored as a two-element vector of the
form [min max]. These values indicate the world range of the y-coordinates in the grid.
This value is read only.

GridLocationWorld — [x,y] world coordinates of grid
[0 0] (default) | two-element vector

[x,y] world coordinates of the bottom-left corner of the grid, specified as a two-element
vector.
Data Types: double

Methods

Examples

Create and Modify Binary Occupancy Grid

Create a 10m x 10m empty map.

 robotics.BinaryOccupancyGrid class

1-5

map = robotics.BinaryOccupancyGrid(10,10,10);

Set occupancy of world locations and show map.

map = robotics.BinaryOccupancyGrid(10,10,10);

x = [1.2; 2.3; 3.4; 4.5; 5.6];

y = [5.0; 4.0; 3.0; 2.0; 1.0];

setOccupancy(map, [x y], ones(5,1))

figure

show(map)

Inflate occupied locations by a given radius.

1 Classes — Alphabetical List

1-6

inflate(map, 0.5)

figure

show(map)

Get grid locations from world locations.

ij = world2grid(map, [x y]);

Set grid locations to free locations.

setOccupancy(map, ij, zeros(5,1), 'grid')

figure

show(map)

 robotics.BinaryOccupancyGrid class

1-7

Image to Binary Occupancy Grid Example

This example shows how to convert an image to a binary occupancy grid for using with
the Robotics System Toolbox®

% Import Image

image = imread('imageMap.png');

% Convert to grayscale and then black and white image based on arbitrary

% threshold.

grayimage = rgb2gray(image);

bwimage = grayimage < 0.5;

% Use black and white image as matrix input for binary occupancy grid

1 Classes — Alphabetical List

1-8

grid = robotics.BinaryOccupancyGrid(bwimage);

show(grid)

• “Updating an Occupancy Grid From Range Sensor Data”

See Also
robotics.PRM | robotics.PurePursuit

More About
• “Occupancy Grids”

 robotics.BinaryOccupancyGrid class

1-9

Introduced in R2015a

1 Classes — Alphabetical List

1-10

robotics.PRM class
Package: robotics

Create probabilistic roadmap path planner

Description

PRM creates a roadmap path planner object for the environment map specified in the
Map property. The object uses the map to generate a roadmap, which is a network graph
of possible paths in the map based on free and occupied spaces. You can customize the
number of nodes, NumNodes, and the connection distance, ConnectionDistance, to fit
the complexity of the map and find an obstacle-free path from a start to an end location.

After the map is defined, the PRM path planner generates the specified number of nodes
throughout the free spaces in the map. A connection between nodes is made when a line
between two nodes contains no obstacles and is within the specified connection distance.

After defining a start and end location, to find an obstacle-free path using this network
of connections, use the findpath method. If findpath does not find a connected path,
it returns an empty array. By increasing the number of nodes or the connection distance,
you can improve the likelihood of finding a connected path, but tuning these properties
is necessary. To see the roadmap and the generated path , use the visualization options
in show. If you change any of the PRM properties, call update, show, or findpath to
recreate the roadmap.

Construction

planner = robotics.PRM creates an empty roadmap with default properties. Before
you can use the roadmap, you must specify a robotics.BinaryOccupancyGrid object in the
Map property.

planner = robotics.PRM(map) creates a roadmap with map set as the Map property,
where map is an object of the robotics.BinaryOccupancyGrid class.

planner = robotics.PRM(map,numnodes) sets the maximum number of nodes,
numnodes, to the NumNodes property.

 robotics.PRM class

1-11

planner = robotics.PRM(___ ,Name,Value) provides additional options
specified by one or more Name,Value pair arguments. Name is the property
name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object is a matrix grid with binary values
indicating obstacles as true (1) and free locations as false (0).

numnodes — Maximum number of nodes in roadmap
50 (default) | scalar

Maximum number of nodes in roadmap, specified as a scalar. By increasing this value,
the complexity and computation time for the path planner increases.

Properties

'ConnectionDistance' — Maximum distance between two connected nodes
inf (default) | scalar in meters

Maximum distance between two connected nodes, specified as the comma-separated pair
consisting of 'ConnectionDistance' and a scalar in meters. This property controls
whether nodes are connected based on their distance apart. Nodes are connected only if
no obstacles are directly in the path. By decreasing this value, the number of connections
is lowered, but the complexity and computation time decreases as well.

'Map' — Map representation
BinaryOccupancyGrid object

Map representation, specified as the comma-separated pair consisting of 'Map' and a
robotics.BinaryOccupancyGrid object. This object represents the environment of the
robot. The object is a matrix grid with binary values indicating obstacles as true (1) and
free locations as false (0).

1 Classes — Alphabetical List

1-12

'NumNodes' — Maximum distance between two connected nodes
inf (default) | scalar

Maximum distance between two connected nodes, specified as the comma-separated pair
consisting of 'NumNodes' and a scalar. By increasing this value, the complexity and
computation time for the path planner increases.

Methods

See Also
robotics.BinaryOccupancyGrid | robotics.PurePursuit

Related Examples
• “Path Planning in Environments of Different Complexity”

More About
• “Probabilistic Roadmaps (PRM)”

Introduced in R2015a

 robotics.PurePursuit class

1-13

robotics.PurePursuit class

Package: robotics

Create controller to follow set of waypoints

Description

PurePursuit creates a controller object used to make a differential drive robot follow
a set of waypoints. The object computes the linear and angular velocities for the
robot. Given the current pose of the robot, you can calculate these velocities using the
step method. Successive calls to step with updated poses provide updated velocity
commands for the robot to follow a path along a desired set of waypoints. Use the
MaxAngularVelocity and DesiredLinearVelocity properties to update the
velocities based on the robot’s performance.

The LookaheadDistanceproperty computes a look-ahead point on the path, which is a
local goal for the robot. The angular velocity command is computed based on this point.
Changing LookaheadDistance has a significant impact on the performance of the
algorithm. A higher look-ahead distance results in a smoother trajectory for the robot,
but can cause the robot to cut corners along the path. Too low of a look-ahead distance
can result in oscillations in tracking the path, causing unstable behavior. For more
information on the pure pursuit algorithm, see “Pure Pursuit Controller”.

Construction

controller = robotics.PurePursuit creates a pure pursuit object, controller,
that uses the pure pursuit algorithm to compute the linear and angular velocity inputs
for a differential drive robot.

controller = robotics.PurePursuit(Name, Value) creates a pure pursuit
object with additional options specified by one or more Name,Value pairs. Name is
the property name and Value is the corresponding value. Name must appear inside
single quotes (' '). You can specify several name-value pair arguments in any order
as Name1,Value1,...,NameN,ValueN. Properties not specified retain their default
values.

1 Classes — Alphabetical List

1-14

Properties

'DesiredLinearVelocity' — Desired constant linear velocity
0.1 (default) | scalar in meters per second

Desired constant linear velocity, specified as the comma-separated pair consisting of
'DesiredLinearVelocity' and a scalar in meters per second. The controller assumes
that the robot drives at a constant linear velocity and that the computed angular velocity
is independent of the linear velocity.
Data Types: double

'LookaheadDistance' — Look-ahead distance
1.0 (default) | scalar in meters

Look-ahead distance, specified as the comma-separated pair consisting of
'LookaheadDistance' and a scalar in meters. The look-ahead distance changes the
response of the controller. A robot with higher look-ahead distance produces smooth
paths but takes larger turns at corners. A robot with smaller look-ahead distance follows
the path closely and takes sharp turns, but can produce oscillations in the path.
Data Types: double

'MaxAngularVelocity' — Maximum angular velocity
1.0 (default) | scalar in radians per second

Maximum angular velocity, specified as the comma-separated pair consisting of
'MaxAngularVelocity' and a scalar in radians per second. The controller saturates
the absolute angular velocity output at the given value.
Data Types: double

'Waypoints' — Waypoints
[] (default) | n-by-2 array

Waypoints, specified as an n-by-2 array of [x y] pairs, where n is the number of
waypoints. You can generate the waypoints from the PRM class or from another source.

Data Types: double

 robotics.PurePursuit class

1-15

Methods

See Also
robotics.BinaryOccupancyGrid | robotics.PRM

Related Examples
• “Path Following for a Differential Drive Robot”

More About
• “Pure Pursuit Controller”

Introduced in R2015a

1 Classes — Alphabetical List

1-16

robotics.VectorFieldHistogram class
Package: robotics

Avoid obstacles using vector field histogram

Description

The vector field histogram (VFH) class enables your robot to avoid obstacles based on
range sensor data. Given a range sensor reading in terms of ranges and angles, and a
target direction to drive toward, the VFH controller computes an obstacle-free steering
direction.

The class uses the VFH+ algorithm to compute the obstacle-free direction. First, the
algorithm takes the ranges and angles from range sensor data and builds a polar
histogram for obstacle locations. Then, it uses the input histogram thresholds to calculate
a binary histogram that indicates occupied and free directions. Finally, the algorithm
computes a masked histogram, which is computed from the binary histogram based on
the minimum turning radius of the robot.

The algorithm selects multiple steering directions based on the open space and possible
driving directions. A cost function, with weights corresponding to the previous, current,
and target directions, calculates the cost of different possible directions. The algorithm
then returns an obstacle-free direction with minimal cost. Using the obstacle-free
direction, you can input commands to move your robot in that direction.

To use this class for your own application and environment, you must tune the properties
of the algorithm. Property values depend on the type of robot, the range sensor, and the
hardware you use.

Construction

VFH = robotics.VectorFieldHistogram returns a vector field histogram object that
computes the obstacle-free steering direction using the VFH+ algorithm.

VFH = robotics.VectorFieldHistogram(Name,Value) returns a vector field
histogram object with each specified property name set to the specified value. You can
specify multiple properties in any order as Name1,Value1,...NameN,ValueN.

 robotics.VectorFieldHistogram class

1-17

Properties

NumAngularSectors — Number of angular sectors in histogram
180 (default) | scalar

Number of angular sectors, specified as a scalar. This property defines the number of
bins used to create the histograms. This property is non-tunable. You can only set this
when the object is initialized.

DistanceLimits — Limits for range readings
[0.05 2] (default) | 2-element vector

Limits for range readings, specified as a 2-element vector. The range readings specified
in the step function are considered only if they fall within the distance limits. Use the
lower distance limit to ignore false positives from poor sensor performance at lower
ranges. Use the upper limit to ignore obstacles that are too far from the robot.

RobotRadius — Radius of the robot in meters
0.1 (default) | scalar

Radius of the robot in meters, specified as a scalar. This dimension defines the smallest
circle that can circumscribe your robot. The robot radius is used to account for robot size
when computing the obstacle-free direction.

SafetyDistance — Safety distance around the robot
0.1 (default) | scalar

Safety distance around the robot, specified as a scalar. This is a safety distance to leave
around the robot position in addition to RobotRadius. The robot radius and safety
distance are used to compute the obstacle-free direction.

MinTurningRadius — Minimum turning radius at current speed
0.1 (default) | scalar

Minimum turning radius for the robot moving at its current speed, specified as a scalar.

TargetDirectionWeight — Cost function weight for target direction
5 (default) | scalar

Cost function weight for moving toward the target direction, specified as a
scalar. To follow a target direction, set this weight to be higher than the sum of

1 Classes — Alphabetical List

1-18

CurrentDirectionWeight and PreviousDirectionWeight. To ignore the target
direction cost, set this weight to zero.

CurrentDirectionWeight — Cost function weight for current direction
2 (default) | scalar

Cost function weight for moving the robot in the current heading direction, specified as
a scalar. Higher values of this weight produces efficient paths. To ignore the current
direction cost, set this weight to zero.

PreviousDirectionWeight — Cost function weight for previous direction
2 (default) | scalar

Cost function weight for moving in the previously selected steering direction, specified as
a scalar. Higher values of this weight produces smoother paths. To ignore the previous
direction cost, set this weight to zero.

HistogramThresholds — Thresholds for binary histogram computation
[3 10] (default) | 2-element vector

Thresholds for binary histogram computation, specified as a 2-element vector. The
algorithm uses these thresholds to compute the binary histogram from the polar obstacle
density. Polar obstacle density values higher than the upper threshold are represented as
occupied space (1) in the binary histogram. Values smaller than the lower threshold are
represented as free space (0). Values that fall between the limits are set to the values in
the previous binary histogram, with the default being free space (0).

Methods

Examples

Create a Vector Field Histogram Object

This example shows how to create a Vector Field Histogram (VFH) object and calculate a
steering direction based on input laser scan data.

Create VFH object

 robotics.VectorFieldHistogram class

1-19

 vfh = robotics.VectorFieldHistogram;

Input laser scan data and target direction.

ranges = 10*ones(1, 500);

ranges(1, 225:275) = 1.0;

angles = linspace(-pi, pi, 500);

targetDir = 0;

Compute obstacle-free steering direction

steeringDir = step(vfh, ranges, angles, targetDir)

steeringDir =

 -0.8014

Visualize the VectorFieldHistogram computation

h = figure;

set(h,'Position',[50 50 800 400])

show(vfh);

1 Classes — Alphabetical List

1-20

References

[1] Borenstein, J., and Y. Koren. "The Vector Field Histogram - Fast Obstacle Avoidance
for Mobile Robots." IEEE Journal of Robotics and Automation. Vol. 7, No. 3,
1991, pp.278–88.

[2] Uldrich, Iwan, and Johann Borenstein. "VFH : Reliable Obstacle Avoidance for
Fast Mobile Robots." Proceedings of the 1998 IEEE International Conference on
Robotics and Automation. 1998, pp. 1572–1577.

See Also
robotics.PRM

More About
• “Vector Field Histogram”

Introduced in R2015b

2

Functions — Alphabetical List

2 Functions — Alphabetical List

2-2

Using BagSelection Objects
Create rosbag selection

Description

The BagSelection object is an index of the messages within a rosbag. You can use it to
extract message data from a rosbag, select messages based on specific criteria, or create a
timeseries of the message properties.

Examples

Create rosbag Selection Using BagSelection Object

Create a BagSelection object from a rosbag log file and parse out specific messages
based on the selected criteria.

Set the path to the logfile

filepath = fullfile(fileparts(which('ROSWorkingWithRosbagsExample')), 'data', 'ex_multiple_topics.bag');

Create a BagSelection object of all the messages in the log file.

bagMsgs = robotics.ros.Bag.parse(filepath);

Select a subset of the messages based on their timestamp and topic.

bagMsgs2 = select(bagMsgs, 'Time', ...

 [bagMsgs.StartTime bagMsgs.StartTime + 1], 'Topic', '/odom');

Retrieve the messages in the selection as a cell array.

msgs = readMessages(bagMsgs2);

Return certain message properties as a time series.

ts = timeseries(bagMsgs2, 'Pose.Pose.Position.X', ...

 'Twist.Twist.Angular.Y');

• “Working with rosbag Logfiles”

 Using BagSelection Objects

2-3

Properties

FilePath — Absolute path to the rosbag file
string

This property is read only.

Absolute path to the rosbag file, specified as a string.

Data Types: char

StartTime — Timestamp of the first message in the selection
scalar

This property is read only.

Timestamp of the first message in the selection, specified as a scalar in seconds.
Data Types: double

EndTime — Timestamp of the last message in the selection
scalar

This property is read only.

Timestamp of the last message in the selection, specified as a scalar in seconds.
Data Types: double

NumMessages — Number of messages in the selection
scalar

This property is read only.

Number of messages in the selection, specified as a scalar. When you first load a rosbag,
this property contains the number of messages in the rosbag. Once you select a subset of
messages with select, the property shows the number of messages in this selection.

Data Types: double

AvailableTopics — Table of topics in the selection
table

This property is read only.

2 Functions — Alphabetical List

2-4

Table of topics in the selection, specified as a table. Each row in the table lists one topic,
the number of messages for this topic, the message type, and the definition of the type.
Data Types: table

MessageList — List of messages in the selection
table

This property is read only.

List of messages in the selection, specified as a table. Each row in the table lists one
message.
Data Types: table

Object Functions
readMessages Read messages from rosbag
select Select subset of messages in rosbag
timeseries Creates a time series object for selected

message properties

Create Object
rosbag Open and parse rosbag log file
select Select subset of messages in rosbag

See Also
readMessages | select | timeseries

More About
• “ROS Log Files (rosbags)”

Introduced in R2015a

 Using Core Objects

2-5

Using Core Objects
Create ROS Core

Description

The ROS Core encompasses many key components and nodes that are essential for
the ROS network. You must have exactly one ROS core running in the ROS network
in order for nodes to communicate. Using this class allows the creation of a ROS core
in MATLAB®. Once the core is created, you can connect to it by calling rosinit or
robotics.ros.Node.

Examples

Create ROS Core

Create ROS Core on localhost and default port 11311.

core = robotics.ros.Core;

Create ROS Core on Specific Port

Create ROS Core on localhost and port 12000.

core = robotics.ros.Core(12000);

• “Connecting to a ROS Network”

Properties

Port — Network port at which the ROS master is listening
11311 (default) | scalar

This property is read only.

Network port at which the ROS master is listening, returned as a scalar.

2 Functions — Alphabetical List

2-6

MasterURI — The URI on which the ROS master can be reached
'http://<HOSTNAME>:11311' (default) | string

This property is read only.

The URI on which the ROS master can be reached, returned as a string. The MasterURI
is constructed based on the host name of your computer. If your host name is not valid,
the IP address of your first network interface is used.

Create Object

core = robotics.ros.Core returns a Core object and starts a ROS core in MATLAB.
This ROS core has a default port of 11311. MATLAB only allows the creation of one core
on any given port and displays an error if another core is detected on the same port.

core = robotics.ros.Core(port) starts a ROS core at the specified port, port.

See Also
Using Node Objects | rosinit

More About
• “ROS Network Setup”

External Websites
• ROS Core

Introduced in R2015a

http://wiki.ros.org/roscore

 Using Node Objects

2-7

Using Node Objects
Start ROS node and connect to ROS master

Description

The robotics.ros.Node object represents a ROS node in the ROS network. The object
enables you to communicate with the rest of the ROS network. You must create a node
before you can use other ROS functionality, such as publishers, subscribers, and services.

You can create a ROS node using the rosinit function, or by calling
robotics.ros.Node:

• rosinit — Creates a single ROS node in MATLAB. You can specify an existing ROS
master, or the function creates one for you. The Node object is not visible.

• robotics.ros.Node— Creates multiple ROS nodes for use on the same ROS
network in MATLAB.

Examples

Create Multiple ROS Nodes

Create multiple ROS nodes. Use the Node object with publishers, subscribers, and other
ROS functionality to specify with which node you are connecting to.

Create a ROS master.

master = robotics.ros.Core;

Initialize multiple nodes.

node1 = robotics.ros.Node('/test_node_1');

node2 = robotics.ros.Node('/test_node_2');

Use these nodes to perform seperate operations and send seperate messages. A message
published by node1 can be accessed by a subscriber running in node2.

pub = robotics.ros.Publisher(node1,'/chatter','std_msgs/String');

2 Functions — Alphabetical List

2-8

sub = robotics.ros.Subscriber(node2,'/chatter','std_msgs/String');

msg = rosmessage('std_msgs/String');

msg.Data = 'Message from Node 1';

Send a message from node1. The subscriber attached to node2 will receive the message.

send(pub,msg) % Sent from node 1

pause(1) % Wait for message to update

sub.LatestMessage

ans =

 ROS String message with properties:

 MessageType: 'std_msgs/String'

 Data: 'Message from Node 1'

 Use showdetails to show the contents of the message

Clear the ROS network of publisher, subscriber, and nodes. Delete the Core object to
shut down the ROS master.

clear('pub','sub','node1','node2')

clear('master')

Connect to Multiple ROS Masters

Connecting to multiple ROS masters is possible using MATLAB. Typically, this need
arises when you try to connect to multiple robots at the same time. When you connect to
multiple ROS masters, you are connecting to two different ROS networks, each with their
own set of nodes and topics.

MATLAB can connect to multiple ROS masters by creating multiple nodes. For example,
assume that you have two robots that are wirelessly connected to your computer running
MATLAB. The first robot has IP address 192.168.1.1 and the second robot has IP address
192.168.1.2.

Create one node connecting to the first robot and one node connecting to the second robot.

node1 = robotics.ros.Node('/test_node_1','192.168.1.1');

node2 = robotics.ros.Node('/test_node_2','192.168.1.2');

 Using Node Objects

2-9

You can now create subscribers, publishers, and other ROS entities and attach them to
each node. For

Create a subscriber for a topic on robot 1.

sub = robotics.ros.Subscriber(node1, '/topic_robot1');

Create a publisher and a message to send with this publisher.

pub = robotics.ros.Publisher(node2, '/topic_robot2');

msg = rosmessage(pub);

The same steps apply for service clients, service servers, parameter trees, and
transformation tree objects. You can now write MATLAB code that interacts with both
robots at the same time.

Properties

Name — Name of the node
string

Name of the node, specified as a string. The node name must be a valid ROS graph name.
See ROS Names.

MasterURI — URI of the ROS master
string

URI of the ROS master, specified as a string. The node is connected to the ROS master
with the given URI.

NodeURI — URI for the node
string

URI for the node, specified as a string. The node uses this URI to advertise itself on the
ROS network for others to connect to it.

CurrentTime — Current ROS network time
Time object

Current ROS network time, specified as a Time object. For more information, see
rostime.

http://wiki.ros.org/Names

2 Functions — Alphabetical List

2-10

Create Object

N = robotics.ros.Node(Name) initializes the ROS node with Name and tries to
connect to the ROS master at default URI, http://localhost:11311.

N = robotics.ros.Node(Name,Host) tries to connect to the ROS master at the
specified IP address or host name, Host using the default port number, 11311.

N = robotics.ros.Node(Name,Host,Port)tries to connect to the ROS master with
port number, Port.

N = robotics.ros.Node(Name,MasterURI,Port) tries to connect to the ROS
master at the specified IP address, MasterURI.

N = robotics.ros.Node(___ ,'NodeHost',HostName) specifies the IP address or
host name that the node uses to advertise itself to the ROS network. Examples include
'192.168.1.1' or 'comp-home'. You can use any of the arguments from the previous
syntaxes.

See Also
rosinit | rosshutdown

More About
• “ROS Network Setup”

External Websites
• ROS Nodes

Introduced in R2015a

http://wiki.ros.org/Nodes

 Using ParameterTree Objects

2-11

Using ParameterTree Objects
Access ROS parameter server

Description

A robotics.ros.ParameterTree object communicates with the ROS parameter
server. The ROS parameter server can store strings, integers, doubles, Booleans, and cell
arrays. The parameters are accessible globally over the ROS network. You can use these
parameters to store static data such as configuration parameters.

Examples

Create ROS ParameterTree Object and Modify Parameters

Start the ROS master and create a ROS node.

master = robotics.ros.Core;

node = robotics.ros.Node('/test1');

Create the parameter tree object.

ptree = robotics.ros.ParameterTree(node);

Set multiple parameters.

set(ptree,'DoubleParam',1.0)

set(ptree,'CharParam','test')

set(ptree,'CellParam',{{'test'},{1,2}});

View the available parameters.

parameters = ptree.AvailableParameters

parameters =

 '/CellParam'

 '/CharParam'

 '/DoubleParam'

2 Functions — Alphabetical List

2-12

Get a parameter value.

data = get(ptree,'CellParam')

data =

 {1x1 cell} {1x2 cell}

Search for a parameter name.

search(ptree,'char')

ans =

 '/CharParam'

Delete the parameter tree and ROS node. Shut down the ROS master.

clear('ptree','node')

clear('master')

• “Accessing the ROS Parameter Server”

Properties

AvailableParameters — List of parameter names on the server
cell array

This property is read only.

List of parameter names on the server, specified as a cell array.
Example: {'/myParam';'/robotSize';'/hostname'}

Data Types: cell

Object Functions
get Get ROS parameter value

 Using ParameterTree Objects

2-13

has Check if ROS parameter name exists
search Search ROS network for parameter names
set Set value of ROS parameter; add new

parameter
del Delete a ROS parameter

Create Object

ptree = robotics.ros.ParameterTree(node) returns a ParameterTree object to
communicate with the ROS parameter server. The parameter tree attaches to the ROS
node, node. To connect to the global node, specify node as [].

See Also
del | get | has | rosparam | search | set

Introduced in R2015a

2 Functions — Alphabetical List

2-14

Using Publisher Objects
Create ROS publisher

Description

The Publisher object represents a publisher on the ROS network. The object publishes
to an available topic or to a topic that it creates. This topic has an associated message
type. When the Publisher object publishes a message to the topic, all subscribers to the
topic receive this message. The same topic can have multiple publishers and subscribers.

You can create a Publisher object using the rospublisher function, or by calling
robotics.ros.Publisher:

• rospublisher only works with the global node using rosinit. It does not require a
node object handle as an argument.

• robotics.ros.Publisher works with additional nodes that are created using
robotics.ros.Node. It requires a node object handle as the first argument.

Examples

Create ROS Publisher with rospublisher and View Properties

Create a ROS publisher and view the associated properties for the
robotics.ros.Publisher object. Add a subscriber to view the updated properties.

Start ROS master.

rosinit

Initializing ROS master on http://bat5236win64:11311/.

Initializing global node /matlab_global_node_14586 with NodeURI http://bat5236win64:55616/

Create a publisher and view its properties.

pub = rospublisher('/chatter','std_msgs/String');

topic = pub.TopicName

subCount = pub.NumSubscribers

 Using Publisher Objects

2-15

topic =

/chatter

subCount =

 0

Subscriber to the publisher topic and view the changes in the NumSubscribers
property.

sub = rossubscriber('/chatter');

pause(1)

subCount = pub.NumSubscribers

rosshutdown

subCount =

 1

Shutting down global node /matlab_global_node_14586 with NodeURI http://bat5236win64:55616/

Shutting down ROS master on http://bat5236win64:11311/.

Use ROS Publisher Object

Create a Publisher object using the class constructor.

Start the ROS master.

master = robotics.ros.Core;

Create a ROS node, which connects to the master.

node = robotics.ros.Node('/test1');

Create a publisher and send string data. The publisher attaches to the node object in the
first argument.

pub = robotics.ros.Publisher(node, '/robotname', 'std_msgs/String');

2 Functions — Alphabetical List

2-16

msg = rosmessage(rostype.std_msgs_String);

msg.Data = 'robot1';

send(pub,msg);

Clear the publisher and ROS node. Shut down the ROS master.

clear('pub','node')

clear('master')

• “Exchanging Data with ROS Publishers and Subscribers”

Properties

TopicName — Name of the published topic
string

This property is read only.

Name of the published topic, specified as a string. If the topic does not exist, the object
creates the topic using its associated message type.
Example: '/chatter'

Data Types: char

MessageType — Message type of published messages
string

This property is read only.

Message type of published messages, specified as a string. This message type remains
associated with the topic and must be used for new messages published.
Example: 'std_msgs/String'

Data Types: char

IsLatching — Indicator of whether publisher is latching
true (default) | false

This property is read only.

Indicator of whether publisher is latching, specified as true or false. A publisher that
is latching saves the last sent message and resends it to any new subscribers.

 Using Publisher Objects

2-17

Data Types: logical

NumSubscribers — Number of subscribers
integer

This property is read only.

Number of subscribers to the published topic, specified as an integer.
Data Types: double

Object Functions
send Publish ROS message to topic
rosmessage Create ROS messages

Create Object

pub = robotics.ros.Publisher(node,topicname) creates a publisher for a
topic with name, topicname. This topic must exist already so the message type can be
retrieved. node is the robotics.ros.Node object handle that this publisher attaches
to. If node is specified as [], the publisher tries to attach to the global node.

pub = robotics.ros.Publisher(node,topicname,type) creates a publisher with
specified message type, type. If the topic already exists, MATLAB checks the message
type and displays an error if the input type differs. If the ROS master topic list already
contains a matching topic, the ROS master adds the MATLAB global node to the list of
publishers for that topic.

pub = robotics.ros.Publisher(___ , 'IsLatching',value) specifies if the
publisher is latching with a Boolean, value. If a publisher is latching, it saves the last
sent message and sends it to any new subscribers. By default, IsLatching is enabled.
You can use any combination of previous inputs with this syntax.

See Also
rosmessage | rospublisher | rossubscriber | send

Introduced in R2015a

2 Functions — Alphabetical List

2-18

Using ServiceClient Objects

Connect to ROS service server

Description

Use robotics.ros.ServiceClient to create a ROS service client object. This service
client uses a persistent connection to send requests to, and receive responses from, a ROS
service server. The connection persists until the service client is deleted or the service
server becomes unavailable.

Examples

Use ROS Service Server with ServiceServer and ServiceClient Objects

Create a ROS service serve by creating a ServiceServer object and use
ServiceClient objects to request information over the network. The callback function
used by the server takes a string, reverses it, and returns the reversed string.

Start the ROS master and node.

master = robotics.ros.Core;

node = robotics.ros.Node('/test');

Create a service server. This server expects a string as a request and responds with a
string based on the callback.

server = robotics.ros.ServiceServer(node,'/data/string',...

 'roseus/StringString');

Create a callback function. This function takes an input string as the Str property of
req and returns it as the Str property of resp. You must create and save this function
seperately. req is a ROS message you create using rosmessage.

% Copyright 2015 The MathWorks, Inc.

 Using ServiceClient Objects

2-19

function [resp] = flipString(~,req,resp)

% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.

resp.Str = fliplr(req.Str);

end

Save this code as a file named flipString.m to a folder on your MATLAB® path.

Assign the callback function for incoming service calls.

server.NewRequestFcn = @flipString;

Create a service client and connect to the service server. Create a request message based
on the client.

client = robotics.ros.ServiceClient(node,'/data/string');

request = rosmessage(client);

request.Str = 'hello world';

Send a service request and wait for a response. Specify that the service waits 3 seconds
for a response.

response = call(client,request,'Timeout',3)

response =

 ROS StringStringResponse message with properties:

 MessageType: 'roseus/StringStringResponse'

 Str: 'dlrow olleh'

 Use showdetails to show the contents of the message

The response is a flipped string from the request message.

Clear the service client, service server, and ROS node. Shut down the ROS master.

clear('client', 'server', 'node')

clear('master')

• “Calling and Providing ROS Services”

2 Functions — Alphabetical List

2-20

Properties

ServiceName — Name of the service
string

This property is read only.

Name of the service, specified as a string.
Example: '/gazebo/get_model_state'

ServiceType — Type of service
string

This property is read only.

Type of service, specified as a string.
Example: 'rostype.gazebo_msgs_GetModelState'

Object Functions
rosmessage Create ROS messages
call Call the ROS service server and receive a

response

Create Object

client = robotics.ros.ServiceClient(node, name) creates a service client that
connects to a service server. The client gets its service type from the server. The service
client attaches to the robotics.ros.Node object handle, node.

client = robotics.ros.ServiceClient(node, name,'Timeout',timeout)

specifies a timeout period in seconds for the client to connect the service server.

See Also
call | rosmessage | rossvcserver

Introduced in R2015a

 Using ServiceServer Objects

2-21

Using ServiceServer Objects
Create ROS service server

Description

Use robotics.ros.ServiceServer to create a ROS service server that can receive
requests from, and send responses to, a ROS service client. You must create the service
server before creating the service client.

When you create the service client, it establishes a connection to the server. The
connection persists while both client and server exist and can reach each other. When
you create the service server, it registers itself with the ROS master. To get a list of
services, or to get information about a particular service that is available on the current
ROS network, use the rosservice function.

The service has an associated message type and contains a pair of messages: one for the
request and one for the response. The service server receives a request, constructs an
appropriate response based on a call function, and returns it to the client. The behavior
of the service server is inherently asynchronous, because it becomes active only when a
service client connects to the ROS network and issues a call.

Examples

Use ROS Service Server with ServiceServer and ServiceClient Objects

Create a ROS service serve by creating a ServiceServer object and use
ServiceClient objects to request information over the network. The callback function
used by the server takes a string, reverses it, and returns the reversed string.

Start the ROS master and node.

master = robotics.ros.Core;

node = robotics.ros.Node('/test');

Create a service server. This server expects a string as a request and responds with a
string based on the callback.

server = robotics.ros.ServiceServer(node,'/data/string',...

2 Functions — Alphabetical List

2-22

 'roseus/StringString');

Create a callback function. This function takes an input string as the Str property of
req and returns it as the Str property of resp. You must create and save this function
seperately. req is a ROS message you create using rosmessage.

% Copyright 2015 The MathWorks, Inc.

function [resp] = flipString(~,req,resp)

% FLIPSTRING Reverses the order of a string in REQ and returns it in RESP.

resp.Str = fliplr(req.Str);

end

Save this code as a file named flipString.m to a folder on your MATLAB® path.

Assign the callback function for incoming service calls.

server.NewRequestFcn = @flipString;

Create a service client and connect to the service server. Create a request message based
on the client.

client = robotics.ros.ServiceClient(node,'/data/string');

request = rosmessage(client);

request.Str = 'hello world';

Send a service request and wait for a response. Specify that the service waits 3 seconds
for a response.

response = call(client,request,'Timeout',3)

response =

 ROS StringStringResponse message with properties:

 MessageType: 'roseus/StringStringResponse'

 Str: 'dlrow olleh'

 Use showdetails to show the contents of the message

 Using ServiceServer Objects

2-23

The response is a flipped string from the request message.

Clear the service client, service server, and ROS node. Shut down the ROS master.

clear('client', 'server', 'node')

clear('master')

• “Calling and Providing ROS Services”

Properties

ServiceName — Name of the service
string

This property is read only.

Name of the service, specified as a string.
Example: '/gazebo/get_model_state'

ServiceType — Type of service
string

This property is read only.

Type of service, specified as a string.
Example: 'rostype.gazebo_msgs_GetModelState'

NewMessageFcn — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

Specify the NewMessageFcn property as:

2 Functions — Alphabetical List

2-24

sub.NewMessageFcn = @subCallback;

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array. The
function header for the callback is:

function subCallback(src,msg,userData)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = {@subCallback,userData};

Object Functions
rosmessage Create ROS messages

Create Object

server = robotics.ros.ServiceServer(node, name,type) creates a service
server that attaches to the ROS node, node. The server becomes available through
the specified service name and type once a callback function handle is specified in
NewMessageFcn.

server = robotics.ros.ServiceServer(node, name,type,callback) specifies
the callback function which is set to the NewMessageFcn property.

See Also
rossvcclient

Introduced in R2015a

 Using Subscriber Objects

2-25

Using Subscriber Objects
Create a ROS subscriber

Description

The Subscriber object represents a subscriber on the ROS network. The
robotics.ros.Subscriber object subscribed to an available topic or to a topic that it
creates. This topic has an associated message type. Publishers can send messages over
the network that the Subscriber object receives.

You can create a Subscriber object by using the rossubscriber function, or by calling
robotics.ros.Subscriber:

• rossubscriber only works with the global node using rosinit. It does not require
a node object handle as an argument.

• robotics.ros.Subscriber works with additional nodes that are created using
robotics.ros.Node. It requires a node object handle as the first argument.

Examples

Use ROS Subscriber Object

Use a ROS Subscriber object to receive messages over the ROS network.

Start the ROS master and node.

master = robotics.ros.Core;

node = robotics.ros.Node('/test');

Create a publisher and subscriber to send and receive a message over the ROS network.

pub = robotics.ros.Publisher(node,'/chatter','std_msgs/String');

pause(1)

sub = robotics.ros.Subscriber(node,'/chatter','std_msgs/String');

Send a message over the network.

msg = rosmessage(rostype.std_msgs_String);

2 Functions — Alphabetical List

2-26

msg.Data = 'hello world';

send(pub,msg)

View the message data using the LatestMesasge property of the Subscriber object.

pause(1)

sub.LatestMessage

ans =

 ROS String message with properties:

 MessageType: 'std_msgs/String'

 Data: 'hello world'

 Use showdetails to show the contents of the message

Clear the publisher, subscriber, and ROS node. Shut down the ROS master.

clear('pub','sub','node')

clear('master')

• “Exchanging Data with ROS Publishers and Subscribers”

Properties

TopicName — Name of the subscribed topic
string

This property is read only.

Name of the subscribed topic, specified as a string. If the topic does not exist, the object
creates the topic using its associated message type.
Example: '/chatter'

Data Types: char

MessageType — Message type of subscribed messages
string

This property is read only.

 Using Subscriber Objects

2-27

Message type of subscribed messages, specified as a string. This message type remains
associated with the topic.
Example: 'std_msgs/String'

Data Types: char

LatestMessage — Latest message sent to the topic
Message object

Latest message sent to the topic, specified as a Message object. The Message object is
specific to the given MessageType. If the subscriber has not received a message, then the
Message object is empty.

BufferSize — Buffer size
1 (default) | scalar

Buffer size of the incoming message queue, specified as the comma-separated pair
consisting of 'BufferSize' and a scalar. If messages arrive faster and than your
callback can process them, they are deleted once the incoming queue is full.

NewMessageFcn — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

Specify the NewMessageFcn property as:

sub.NewMessageFcn = @subCallback;

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array. The
function header for the callback is:

function subCallback(src,msg,userData)

2 Functions — Alphabetical List

2-28

Specify the NewMessageFcn property as:

sub.NewMessageFcn = {@subCallback,userData};

Object Functions
receive Wait for new ROS message
rosmessage Create ROS messages

Create Object

sub = robotics.ros.Subscriber(node,topicname) subscribes to a topic with
name, topicname. node is the robotics.ros.Node object handle that this publisher
attaches to.

sub = robotics.ros.Subscriber(node,topicname,type) specifies the message
type, type, of the topic. If a topic with the same name exists with a different message
type, MATLAB creates a new topic with the given message type.

sub = robotics.ros.Subscriber(node,topicname,callback) specifies a
callback function, and optional data, to run when the subscriber object receives a topic
message. See NewMessageFcn in “Properties” on page 2-26 for more information
about the callback function.

sub = robotics.ros.Subscriber(node,topicname,type,callback) specifies
the topic name, type and callback function for the subscriber.

sub = robotics.ros.Subscriber(___ ,'BufferSize',value) specifies the
queue size in value for incoming messages. See the BufferSize in “Properties” on page
2-26 for more information. You can use any combination of previous inputs with this
syntax.

See Also
receive | rosmessage | rospublisher | rossubscriber

Introduced in R2015a

 Using TransformationTree Objects

2-29

Using TransformationTree Objects
Receive, send, and apply ROS transformations

Description

ROS uses the tf transform library to store the relationship between multiple coordinate
frames. The relative transformations between these coordinate frames are maintained
in a tree structure. Querying this tree lets you transform entities like poses and points
between any two coordinate frames.

Examples

Use TransformationTree Object

Create a ROS transformation tree. You can then view or use transformation information
for different coordinate frames setup in the ROS network.

Start ROS network and broadcast sample transformation data.

rosinit

node = robotics.ros.Node('/testTf');

exampleHelperROSStartTfPublisher

Initializing ROS master on http://bat5236win64:11311/.

Initializing global node /matlab_global_node_99770 with NodeURI http://bat5236win64:56663/

Using Master URI http://localhost:11311 from the global node to connect to the ROS master.

Retrieve the TransformationTree object. Pause to wait for tftree to update.

tftree = robotics.ros.TransformationTree(node);

pause(1)

View available coordinate frames and the time when they were last received.

frames = tftree.AvailableFrames

updateTime = tftree.LastUpdateTime

frames =

2 Functions — Alphabetical List

2-30

 'camera_center'

 'mounting_point'

 'robot_base'

updateTime =

 ROS Time with properties:

 Sec: 1440450735

 Nsec: 863000000

Wait for the transform between two frames, 'camera_center' and 'robot_base'.
This will wait until the transformation is valid and block all other operations. A time out
of 5 seconds is also given.

waitForTransform(tftree,'robot_base','camera_center',5)

Define a point in the camer's coordinate frame.

pt = rosmessage('geometry_msgs/PointStamped');

pt.Header.FrameId = 'camera_center';

pt.Point.X = 3;

pt.Point.Y = 1.5;

pt.Point.Z = 0.2;

Tranform the point into the 'base_link' frame.

tfpt = transform(tftree, 'robot_base', pt)

tfpt =

 ROS PointStamped message with properties:

 MessageType: 'geometry_msgs/PointStamped'

 Header: [1x1 Header]

 Point: [1x1 Point]

 Use showdetails to show the contents of the message

Display the transformed point coordinates.

 Using TransformationTree Objects

2-31

tfpt.Point

ans =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'

 X: 1.2000

 Y: 1.5000

 Z: -2.5000

 Use showdetails to show the contents of the message

Clear ROS node. Shut down ROS master.

clear('node')

rosshutdown

Shutting down global node /matlab_global_node_99770 with NodeURI http://bat5236win64:56663/

Shutting down ROS master on http://bat5236win64:11311/.

• “Accessing the tf Transformation Tree in ROS”

Properties

AvailableFrames — List of all available coordinate frames
cell array

This property is read only.

List of all available coordinate frames, specified as a cell array. This list of available
frames updates if new transformations are received by the transformation tree object.
Example: {'camera_center';'mounting_point';'robot_base'}

Data Types: cell

LastUpdateTime — Time when the last transform was received
ROS Time object

This property is read only.

2 Functions — Alphabetical List

2-32

Time when the last transform was received, specified as a ROS Time object.

Object Functions
waitForTransform Wait until a transformation is available
getTransform Retrieve the transformation between two

coordinate frames
transform Transform message entities into target

coordinate frame
sendTransform Send transformation to ROS network

Create Object

trtree = robotics.ros.TransformationTree(node) creates a ROS
transformation tree object handle that the transformation tree is attached to. node is the
node connected to the ROS network that publishes transformations.

See Also
getTransform | rostf | sendTransform | transform | waitForTransform

Introduced in R2015a

 angdiff

2-33

angdiff
Difference between two angles

Syntax

delta = angdiff(alpha,beta)

delta = angdiff(alpha)

Description

delta = angdiff(alpha,beta) calculates the difference between the angles alpha
and beta. This function subtracts alpha from beta with the result wrapped on the
interval [-pi,pi]. You can specify the input angles as single values or as arrays of
angles that have the same number of values.

delta = angdiff(alpha) returns the angular difference between adjacent elements of
alpha along the first dimension whose size does not equal 1. The first entry is subtracted
from the second, the second from the third, etc. The output, delta, will be a matrix
of size m-1-by-n given that alpha is a m-by-n matrix and m is greater than 1 and n is
greater than zero.

Examples

Calculate Difference Between Two Angles

d = angdiff(pi,2*pi)

d =

 3.1416

Calculate Difference Between Two Angle Arrays

d = angdiff([pi/2 3*pi/4 0],[pi pi/2 -pi])

2 Functions — Alphabetical List

2-34

d =

 1.5708 -0.7854 -3.1416

Calculate Angle Differences of Adjacent Elements

angles = [pi pi/2 pi/4 pi/2];

d = angdiff(angles)

d =

 -1.5708 -0.7854 0.7854

Input Arguments

alpha — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array. This is
the angle that is subtracted from beta when specified.

Example: pi/2

beta — Angle in radians
scalar | vector | matrix | multidimensional array

Angle in radians, specified as a scalar, vector, matrix, or multidimensional array of the
same size as alpha. This is the angle that alpha is subtracted from when specified.

Example: pi/2

Output Arguments

delta — Difference between two angles
scalar | vector | matrix | multidimensional array

Angular difference between two angles, returned as a scalar, vector, or array. delta is
wrapped to the interval [-pi,pi].

 angdiff

2-35

Introduced in R2015a

2 Functions — Alphabetical List

2-36

apply
Transform message entities into target frame

Syntax

tfentity = apply(tfmsg,entity)

Description

tfentity = apply(tfmsg,entity) applies the transformation represented by the
'TransformStamped' ROS message to the input message object entity.

This function determines the message type of entity and apples the appropriate
transformation method to it. If the object cannot handle a particular message type, then
MATLAB displays an error message.

If you only want to use the most current transformation, call transform instead. If you
want to store a transformation message for later use, callgetTransform and then call
apply.

Examples

Apply Transformation to a Point

tfPoint = apply(transform,point);

Input Arguments

tfmsg — Transformation message
TransformStamped ROS message handle

Transformation message, specified as a TransformStamped ROS message handle. The
tfmsg is a ROS message of type: geometry_msgs/TransformStamped.

 apply

2-37

entity — ROS message
Message object handle

ROS message, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped

• geometry_msgs/PoseStamped

• geometry_msgs/PointCloud2Stamped

• geometry_msgs/QuaternionStamped

• geometry_msgs/Vector3Stamped

Output Arguments

tfentity — Transformed ROS message
Message object handle

Transformed ROS message, returned as a Message object handle.

See Also
getTransform | transform

Introduced in R2015a

2 Functions — Alphabetical List

2-38

axang2quat
Convert axis-angle rotation to quaternion

Syntax

quat = axang2quat(axang)

Description

quat = axang2quat(axang) converts a rotation given in axis-angle form, axang, to
quaternion, quat.

Examples

Convert Axis-Angle Rotation to Quaternion

axang = [1 0 0 pi/2];

quat = axang2quat(axang)

quat =

 0.7071 0.7071 0 0

Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

 axang2quat

2-39

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

See Also
quat2axang

Introduced in R2015a

2 Functions — Alphabetical List

2-40

axang2rotm
Convert axis-angle rotation to rotation matrix

Syntax

rotm = axang2rotm(axang)

Description

rotm = axang2rotm(axang) converts a rotation given in axis-angle form, axang, to an
orthonormal rotation matrix, rotm. When using the rotation matrix, premultiply it with
the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Rotation Matrix

axang = [0 1 0 pi/2];

rotm = axang2rotm(axang)

rotm =

 0.0000 0 1.0000

 0 1.0000 0

 -1.0000 0 0.0000

Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).

 axang2rotm

2-41

Example: [1 0 0 pi/2]

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

See Also
rotm2axang

Introduced in R2015a

2 Functions — Alphabetical List

2-42

axang2tform

Convert axis-angle rotation to homogeneous transformation

Syntax

tform = axang2tform(axang)

Description

tform = axang2tform(axang) converts a rotation given in axis-angle form, axang, to
a homogeneous transformation matrix, tform. When using the transformation matrix,
premultiply it with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Axis-Angle Rotation to Homogeneous Transformation

axang = [1 0 0 pi/2];

tform = axang2tform(axang)

tform =

 1.0000 0 0 0

 0 0.0000 -1.0000 0

 0 1.0000 0.0000 0

 0 0 0 1.0000

Input Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

 axang2tform

2-43

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the transformation matrix, premultiply it with the
coordinates to be formed (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

See Also
tform2axang

Introduced in R2015a

2 Functions — Alphabetical List

2-44

call

Call the ROS service server and receive a response

Syntax

response = call(serviceclient)

response = call(serviceclient,requestmsg)

response = call(___ ,Name,Value)

Description

response = call(serviceclient) sends a default service request message and
waits for a service response. The default service request message is an empty message
of type serviceclient.ServiceType.

response = call(serviceclient,requestmsg) specifies a service request message,
requestmsg, to be sent to the service.

response = call(___ ,Name,Value) provides additional options specified by one
or more Name,Value pair arguments, using any of the arguments from the previous
syntaxes. Name must appear inside single quotes (''). You can specify several name-
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

Examples

Create Service Client and Call for Response Using Default Message

client = rossvcclient('/gazebo/get_model_state');

response = call(client);

Call for Response Using Specific Request Message

reqmessage = rosmessage(client);

 call

2-45

response = call(client,reqmessage);

Wait for Response Using Timeout of Five Seconds

response = call(client,reqmessage,'TimeOut',5);

Input Arguments
serviceclient — Service client
ServiceClient object handle

Service client, specified as a ServiceClient object handle.

requestmsg — Request message
Message object handle

Request message, specified as a Message object handle. The default message type is
serviceclient.ServiceType.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'TimeOut',5

'TimeOut' — Timeout for service response in seconds
inf (default) | scalar

Timeout for service response in seconds, specified as a comma-separated pair consisting
of 'Timeout' and a scalar. If the service client does not receive a service response and
the timeout period elapses, call displays an error message and lets MATLAB continue
running the current program. The default value of inf blocks MATLAB from running
the current program until the service client receives a service response.

Output Arguments
response — Response message
Message object handle

2 Functions — Alphabetical List

2-46

llResponse message sent by the service server, returned as a Message object handle.

See Also
rossvcclient

Introduced in R2015a

 cart2hom

2-47

cart2hom
Convert Cartesian coordinates to homogeneous coordinates

Syntax

hom = cart2hom(cart)

Description

hom = cart2hom(cart) converts a set of points in Cartesian coordinates to
homogeneous coordinates.

Examples

Convert 3-D Cartesian Points to Homogeneous Coordinates

c = [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975];

h = cart2hom(c)

h =

 0.8147 0.1270 0.6324 1.0000

 0.9058 0.9134 0.0975 1.0000

Input Arguments

cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, specified as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.

Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

2 Functions — Alphabetical List

2-48

Output Arguments

hom — Homogeneous points
n-by-k matrix

Homogeneous points, returned as an n-by-k matrix, containing n points. k must be
greater than or equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

See Also
hom2cart

Introduced in R2015a

 definition

2-49

definition

Retrieve definition of ROS message type

Syntax

def = definition(msg)

Description

def = definition(msg) returns the ROS definition of the message type associated
with the message object, msg. The details of the message definition include the structure,
property data types, and comments from the authors of that specific message.

Examples

Access ROS Message Definition for Message

Create a Point Message.

point = rosmessage('geometry_msgs/Point');

Access the definition.

def = definition(point)

def =

% This contains the position of a point in free space

double X

double Y

double Z

2 Functions — Alphabetical List

2-50

Input Arguments

msg — ROS message
Message object handle

ROS message, specified as a Message object handle. This message can be created using
the rosmessage function.

Output Arguments

def — Details of message definition
string

Details of the information inside the ROS message definition, returned as a string.

See Also
rosmessage | rosmsg

Introduced in R2015a

 del

2-51

del

Delete a ROS parameter

Syntax

del(ptree,paramname)

Description

del(ptree,paramname) deletes a parameter with name paramname from the
parameter tree, ptree. The parameter is also deleted from the ROS parameter server. If
the specified paramname does not exist, the function displays an error.

Examples

Delete Parameter on ROS Master

Create parameter tree, 'MyParam' parameter, and check existence.

ptree = rosparam;

set(ptree,'MyParam','test')

has(ptree,'MyParam')

ans =

 1

Delete parameter and check existence.

del(ptree,'MyParam')

has(ptree,'MyParam')

ans =

2 Functions — Alphabetical List

2-52

 0

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

See Also
has | rosparam | set

Introduced in R2015a

 eul2quat

2-53

eul2quat
Convert Euler angles to quaternion

Syntax

quat = eul2quat(eul)

quat = eul2quat(eul,sequence)

Description

quat = eul2quat(eul) converts a given set of Euler angles, eul, to the corresponding
quaternion, quat. The default order for Euler angle rotations is 'ZYX'.

quat = eul2quat(eul,sequence) converts a set of Euler angles into a quaternion.
The Euler angles are specified in the axis rotation sequence, sequence. The default
order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Quaternion

eul = [0 pi/2 0];

qZYX = eul2quat(eul)

qZYX =

 0.7071 0 0.7071 0

Convert Euler Angles to Quaternion Using Default ZYZ Axis Order

eul = [pi/2 0 0];

qZYZ = eul2quat(eul,'ZYZ')

qZYZ =

2 Functions — Alphabetical List

2-54

 0.7071 0 0 0.7071

Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

See Also
quat2eul

Introduced in R2015a

 eul2rotm

2-55

eul2rotm
Convert Euler angles to rotation matrix

Syntax

rotm = eul2rotm(eul)

rotm = eul2rotm(eul,sequence)

Description

rotm = eul2rotm(eul) converts a set of Euler angles, eul, to the corresponding
rotation matrix, rotm. When using the rotation matrix, premultiply it with the
coordinates to be rotated (as opposed to postmultiplying). The default order for Euler
angle rotations is 'ZYX'.

rotm = eul2rotm(eul,sequence) converts Euler angles to a rotation matrix, rotm.
The Euler angles are specified in the axis rotation sequence, sequence. The default
order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Rotation Matrix

eul = [0 pi/2 0];

rotmZYX = eul2rotm(eul)

rotmZYX =

 0.0000 0 1.0000

 0 1.0000 0

 -1.0000 0 0.0000

Convert Euler Angles to Rotation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];

rotmZYZ = eul2rotm(eul,'ZYZ')

2 Functions — Alphabetical List

2-56

rotmZYZ =

 0.0000 -0.0000 1.0000

 1.0000 0.0000 0

 -0.0000 1.0000 0.0000

Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

See Also
rotm2eul

 eul2rotm

2-57

Introduced in R2015a

2 Functions — Alphabetical List

2-58

eul2tform
Convert Euler angles to homogeneous transformation

Syntax

eul = eul2tform(eul)

tform = eul2tform(eul,sequence)

Description

eul = eul2tform(eul) converts a set of Euler angles, eul, into a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying). The default order
for Euler angle rotations is 'ZYX'.

tform = eul2tform(eul,sequence) converts Euler angles to a homogeneous
transformation. The Euler angles are specified in the axis rotation sequence, sequence.
The default order for Euler angle rotations is 'ZYX'.

Examples

Convert Euler Angles to Homogeneous Transformation Matrix

eul = [0 pi/2 0];

tformZYX = eul2tform(eul)

tformZYX =

 0.0000 0 1.0000 0

 0 1.0000 0 0

 -1.0000 0 0.0000 0

 0 0 0 1.0000

Convert Euler Angles to Homogeneous Transformation Matrix Using ZYZ Axis Order

eul = [0 pi/2 pi/2];

 eul2tform

2-59

tformZYZ = eul2tform(eul,'ZYZ')

tformZYZ =

 0.0000 -0.0000 1.0000 0

 1.0000 0.0000 0 0

 -0.0000 1.0000 0.0000 0

 0 0 0 1.0000

Input Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, specified as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

2 Functions — Alphabetical List

2-60

See Also
tform2eul

Introduced in R2015a

 get

2-61

get
Get ROS parameter value

Syntax

pvalue = get(ptree,paramname)

Description

pvalue = get(ptree,paramname) gets the value of the parameter with the name
paramname from the parameter tree object ptree.

Examples

Set and Get Parameter Value

Create the parameter tree.

ptree = rosparam;

Set the parameter value.

set(ptree,'DoubleParam',1.0)

Get the parameter value.

get(ptree,'DoubleParam')

ans =

 1

Input Arguments

ptree — Parameter tree
ParameterTree object handle

2 Functions — Alphabetical List

2-62

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

Output Arguments

pvalue — Parameter value
int32 | logical | char | double | cell array

Parameter value, returned as either a int32, logical, double, char, or cell array.
pvalue matches the value of the specifiedparamname and the supported data type in
ParameterTree. Currently, Base64–encoded binary data and iso8601 data from ROS
are not supported.

See Also
rosparam | set

Introduced in R2015a

 getTransform

2-63

getTransform
Retrieve the transformation between two coordinate frames

Syntax

tf = getTransform(tftree,targetframe,sourceframe)

Description

tf = getTransform(tftree,targetframe,sourceframe) returns the latest known
transformation between two coordinate frames. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

Examples

Get Transformation

tf = getTransform(tftree,'/camera_depth_frame','/base_link');

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame, specified as a string. You can view the available frames for
transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
string

2 Functions — Alphabetical List

2-64

Initial coordinate frame, specified as a string. You can view the available frames for
transformation by calling tftree.AvailableFrames.

Output Arguments

tf — Transformation between coordinate frames
TransformStamped object handle

Transformation between coordinate frames, returned as a TransformStamped object
handle. Transformations are structured as a 3-D translation (3-element vector) and a 3-D
rotation (quaternion).

See Also
transform | waitForTransform

Introduced in R2015a

 has

2-65

has

Check if ROS parameter name exists

Syntax

exists = has(ptree,paramname)

Description

exists = has(ptree,paramname) checks if the parameter with name paramname
exists in the parameter tree, ptree.

Examples

Check If ROS Parameter Exists

Create a parameter tree and check for the 'MyParam' parameter.

ptree = rosparam;

has(ptree,'MyParam')

ans =

 0

Create a ‘MyParam’ parameter and verify that it exists.

set(ptree,'MyParam','test')

has(ptree,'MyParam')

ans =

2 Functions — Alphabetical List

2-66

 1

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

Output Arguments

exists — Flag indicating whether the parameter exists
true | false

Flag indicating whether the parameter exists, returned as true or false.

See Also
get | rosparam | search | set

Introduced in R2015a

 hom2cart

2-67

hom2cart

Convert homogeneous coordinates to Cartesian coordinates

Syntax

cart = hom2cart(hom)

Description

cart = hom2cart(hom) converts a set of homogeneous points to Cartesian coordinates.

Examples

Convert Homogeneous Points to 3-D Cartesian Points

h = [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5];

c = hom2cart(h)

c =

 0.5570 1.9150 0.3152

 1.0938 1.9298 1.9412

Input Arguments

hom — Homogeneous points
n-by-k matrix

Homogeneous points, specified as an n-by-k matrix, containing n points. k must be
greater than or equal to 2.
Example: [0.2785 0.9575 0.1576 0.5; 0.5469 0.9649 0.9706 0.5]

2 Functions — Alphabetical List

2-68

Output Arguments

cart — Cartesian coordinates
n-by-(k–1) matrix

Cartesian coordinates, returned as an n-by-(k–1) matrix, containing n points. Each row of
cart represents a point in (k–1)-dimensional space. k must be greater than or equal to 2.

Example: [0.8147 0.1270 0.6324; 0.9058 0.9134 0.0975]

See Also
cart2hom

Introduced in R2015a

 plot

2-69

plot

Display ROS laser scan messages on custom plot

Syntax

plot(scan)

plot(scan,Name,Value)

linehandle = plot(___)

Description

plot(scan) creates a line plot of the laser scan in xy-coordinates that is based on the
input LaserScan object message. Axes are automatically scaled to the maximum range
that the laser scanner supports.

plot(scan,Name,Value) provides additional options specified by one or
more Name,Value pair arguments. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

linehandle = plot(___) returns a column vector of line series handles, using any of
the arguments from previous syntaxes. Use linehandle to modify properties of the line
series after it is created.

When plotting ROS laser scan messages, MATLAB follows the standard ROS convention
for axis orientation. This convention states that positive x is forward, positive y is
left, and positive z is up. For more information, see Axis Orientation on the ROS Wiki.

http://www.ros.org/reps/rep-0103.html#axis-orientation

2 Functions — Alphabetical List

2-70

Examples

Plot Laser Scan

plot(scan);

Plot Laser Scan with Maximum Range Specified

plot(scan,'MaximumRange',10);

Save Line Handle for Laser Scan Plot

linehandle = plot(scan);

Input Arguments

scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MaximumRange',5

'Parent' — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of 'Parent' and an
axes object in which the laser scan is drawn. By default, the laser scan is plotted in the
currently active axes.

'MaximumRange' — Range of laser scan
scan.RangeMax (default) | scalar

Range of laser scan, specified as the comma-sepearated pair consisting of
'MaximumRange' and a scalar. When you specify this name-value pair argument, the

 plot

2-71

minimum and maximum x-axis limits and the maximum y-axis limit are set based on
specified value. The minimum y-axis limit is automatically determined by the opening
angle of the laser scanner.

Outputs

linehandle — One or more chart line objects
scalar | vector

One or more chart line objects, returned as a scalar or a vector. These are unique
identifiers, which you can use to query and modify properties of a specific chart line.

See Also
readCartesian

Introduced in R2015a

2 Functions — Alphabetical List

2-72

quat2axang

Convert quaternion to axis-angle rotation

Syntax

axang = quat2axang(quat)

Description

axang = quat2axang(quat) converts a quaternion, quat, to the equivalent axis-angle
rotation, axang.

Examples

Convert Quaternion to Axis-Angle Rotation

quat = [0.7071 0.7071 0 0];

axang = quat2axang(quat)

axang =

 1.0000 0 0 1.5708

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

 quat2axang

2-73

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

See Also
axang2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-74

quat2eul
Convert quaternion to Euler angles

Syntax

eul = quat2eul(quat)

eul = quat2eul(quat,sequence)

Description

eul = quat2eul(quat) converts a quaternion rotation, quat, to the corresponding
Euler angles, eul. The default order for Euler angle rotations is 'ZYX'.

eul = quat2eul(quat,sequence) converts a quaternion into Euler angles. The Euler
angles are specified in the axis rotation sequence, sequence. The default order for Euler
angle rotations is 'ZYX'.

Examples

Convert Quaternion to Euler Angles

quat = [0.7071 0.7071 0 0];

eulZYX = quat2eul(quat)

eulZYX =

 0 0 1.5708

Convert Quaternion to Euler Angles Using ZYZ Axis Order

quat = [0.7071 0.7071 0 0];

eulZYZ = quat2eul(quat,'ZYZ')

eulZYZ =

 quat2eul

2-75

 1.5708 -1.5708 -1.5708

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

See Also
eul2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-76

quat2rotm
Convert quaternion to rotation matrix

Syntax

rotm = quat2rotm(quat)

Description

rotm = quat2rotm(quat) converts a quaternion quat to an orthonormal rotation
matrix, rotm. When using the rotation matrix, premultiply it with the coordinates to be
rotated (as opposed to postmultiplying).

Examples

Convert Quaternion to Rotation Matrix

quat = [0.7071 0.7071 0 0];

rotm = quat2rotm(quat)

rotm =

 1.0000 0 0

 0 -0.0000 -1.0000

 0 1.0000 -0.0000

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.

 quat2rotm

2-77

Example: [0.7071 0.7071 0 0]

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

See Also
rotm2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-78

quat2tform
Convert quaternion to homogeneous transformation

Syntax

tform = quat2tform(quat)

Description

tform = quat2tform(quat) converts a quaternion, quat, to a homogeneous
transformation matrix, tform. When using the transformation matrix, premultiply it
with the coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Quaternion to Homogeneous Transformation

quat = [0.7071 0.7071 0 0];

tform = quat2tform(quat)

tform =

 1.0000 0 0 0

 0 -0.0000 -1.0000 0

 0 1.0000 -0.0000 0

 0 0 0 1.0000

Input Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, specified as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.

 quat2tform

2-79

Example: [0.7071 0.7071 0 0]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

See Also
tform2quat

Introduced in R2015a

2 Functions — Alphabetical List

2-80

readAllFieldNames
Get all available field names from ROS point cloud

Syntax

fieldnames = readAllFieldNames(pcloud)

Description

fieldnames = readAllFieldNames(pcloud) gets the names of all point fields
that are stored in the PointCloud2 object message, pcloud, and returns them in
fieldnames.

Examples

Read All Fields from Point Cloud Message

fieldnames = readAllFieldNames(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments

fieldnames — List of field names in PointCloud2 object
cell array of strings

List of field names in PointCloud2 object, returned as a cell array of strings. If no fields
exist in the object, fieldname returns an empty cell array.

 readAllFieldNames

2-81

See Also
readField

Introduced in R2015a

2 Functions — Alphabetical List

2-82

readBinaryOccupancyGrid
Read binary occupancy grid

Syntax

map = readBinaryOccupancyGrid(msg)

map = readBinaryOccupancyGrid(msg,thresh)

map = readBinaryOccupancyGrid(msg,thresh,val)

Description

map = readBinaryOccupancyGrid(msg) returns a robotics.BinaryOccupancyGrid
object by reading the data inside a ROS message, msg, which must be a 'nav_msgs/
OccupancyGrid' message. All message data values greater than or equal to the
occupancy threshold are set to occupied, 1, in the map. All other values, including
unknown values (-1) are set to unoccupied, 0, in the map.

map = readBinaryOccupancyGrid(msg,thresh) specifies a threshold, thresh, for
occupied values. All values greater than or equal to the threshold are set to occupied, 1.
All other values are set to unoccupied, 0.

map = readBinaryOccupancyGrid(msg,thresh,val) specifies a value to set for
unknown values (-1). By default, all unknown values are set to unoccupied, 0.

Examples

Read Data from Message

Create a occupancy grid message and populate it with data.

msg = rosmessage('nav_msgs/OccupancyGrid');

msg.Info.Height = 10;

msg.Info.Width = 10;

msg.Info.Resolution = 0.1;

msg.Data = 100*rand(100,1);

 readBinaryOccupancyGrid

2-83

Read data from message

map = readBinaryOccupancyGrid(msg);

Read Message Data with Threshold

Threshold for occupied values is set to 65 and greater.

map = readBinaryOccupancyGrid(msg,65);

Read Message Data with Threshold and Unknown Value Replacement

map = readBinaryOccupancyGrid(msg,65,1);

Input Arguments

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

thresh — Threshold for occupied values
50 (default) | scalar

Threshold for occupied values, specified as a scalar. Any value greater than or equal to
the threshold is set to occupied, 1. All other values are set to unoccupied, 0.

Data Types: double

val — Value to replace unknown values
0 (default) | 1

Value to replace unknown values, specified as either 0 or 1. Unknown message values
(-1) are set to the given value.

Data Types: double | logical

Output Arguments

map — Binary occupancy grid
BinaryOccupancyGrid object handle

2 Functions — Alphabetical List

2-84

Binary occupancy grid, returned as a BinaryOccupancyGrid object handle. map is
converted from a 'nav_msgs/OccupancyGrid' message on the ROS network. It is
an object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.

See Also
robotics.BinaryOccupancyGrid | writeBinaryOccupancyGrid

Introduced in R2015a

 readCartesian

2-85

readCartesian

Read laser scan ranges in Cartesian coordinates

Syntax

cart = readCartesian(scan)

cart = readCartesian(___ ,Name,Value)

[angles,cart] = readCartesian(___)

Description

cart = readCartesian(scan) converts the polar measurements of the laser scan
object, scan, into Cartesian coordinates, cart. This function uses the metadata in the
message, such as angular resolution and opening angle of the laser scanner, to perform
the conversion. Invalid range readings, usually represented as NaN, are ignored in this
conversion.

cart = readCartesian(___ ,Name,Value) provides additional options specified
by one or more Name,Value pair arguments. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

[angles,cart] = readCartesian(___) returns the scan angles, angles that are
associated with each Cartesian coordinate. Angles are measured counter-clockerwise
around the positive z-axis, with the zero angle along the x-axis. angles is returned in
radians and wrapped to the [–pi, pi] interval.

2 Functions — Alphabetical List

2-86

Examples

Read Laser Scan and Convert to Cartesian Coordinates

cart = readCartesian(scan);

Read Laser Scan and Specify Scan Range

cart = readCartesian(scan,'RangeLimit',[0 10]);

Input Arguments

scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'RangeLimits',[-2 2]

'RangeLimits' — Minimum and maximum range for scan in meters
[scan.RangeMin scan.RangeMax] (default) | 2-element [min max] vector

Minimum and maximum range for scan in meters, specified as a 2-element [min max]
vector. All ranges smaller than min or larger than max are ignored during the conversion
to Cartesian coordinates.

Output Arguments

cart — Cartesian coordinates of laser scan
n–by–2 matrix in meters

Cortesian coordinates of laser scan, returned as an n-by-2 matrix in meters.

 readCartesian

2-87

angles — Scan angles for laser scan data
n–by–1 matrix in radians

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are
measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [–pi, pi] interval.

See Also
plot | readScanAngles

Introduced in R2015a

2 Functions — Alphabetical List

2-88

readField
Read point cloud data based on field name

Syntax

fielddata = readField(pcloud,fieldname)

Description

fielddata = readField(pcloud,fieldname) reads the point field from the point
cloud, pcloud, specified by fieldname and returns it in fielddata. If fieldname
does not exist, the function displays an error. To preserve the structure of the point cloud
data, see “Preserving Point Cloud Structure” on page 2-89.

Examples

Read x Coordinates for All Points

x = readField(pcloud,'x');

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

fieldname — Field name of point cloud data
string

Field name of point cloud data, specified as a string. This string must match the field
name exactly. If fieldname does not exist, the function displays an error.

 readField

2-89

Output Arguments

fielddata — List of field values from point cloud
matrix

List of field values from point cloud, returned as a matrix. Each row of is a point cloud
reading, where n is the number of points and c is the number of values for each point.
If the point cloud object being read has the PreserveStructureOnRead property set
to true, the points are returned as an h-by-w-by-c matrix. For more information, see
“Preserving Point Cloud Structure” on page 2-89.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readAllFieldNames

Introduced in R2015a

2 Functions — Alphabetical List

2-90

readImage
Convert ROS image data into MATLAB image

Syntax

img = readImage(msg)

[img,alpha] = readImage(msg)

Description

img = readImage(msg) converts the raw image data in the message object, msg, into
an image matrix, img. You can call readImage using either 'sensor_msgs/Image' or
'sensor_msgs/CompressedImage' messages.

ROS image message data is stored in a format that is not compatible with further image
processing in MATLAB. Based on the specified encoding, this function converts the data
into an appropriate MATLAB image and returns it in img.

[img,alpha] = readImage(msg) returns the alpha channel of the image in alpha. If
the image does not have an alpha channel, then alpha is empty.

Examples

Read ROS Image Data

[img,alpha] = readImage(obj);

Input Arguments

msg — ROS image message
Image object handle | CompressedImage object handle

'sensor_msgs/Image' or 'sensor_msgs/CompressedImage' ROS image message,
specified as an Image or Compressed Image object handle.

 readImage

2-91

Output Arguments

img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, returned as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, returned as a uint8 grayscale image. If no alpha channel exists, alpha
is empty.

More About

Tips

ROS image messages can have different encodings. The encodings supported for images
are different for 'sensor_msgs/Image' and 'sensor_msgs/CompressedImage'
message types. Less compressed images are supported. The following encodings for raw
images of size MxN are supported using the 'sensor_msgs/Image' message type
('sensor_msgs/CompressedImage' support is in bold):

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uint8.

• rgb16, rgba16, bgr16, bgra16: img is an RGB image of size MxNx3. The alpha
channel is returned in alpha. Each value in the outputs is represented as a uint16.

• mono8 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uint8.

• mono16 images are returned as grayscale images of size MxNx1. Each pixel value is
represented as a uint16.

• 32fcX images are returned as floating-point images of size MxNxD, where D is 1, 2, 3,
or 4. Each pixel value is represented as a single.

• 64fcX images are returned as floating-point images of size MxNxD, where D is 1, 2, 3,
or 4. Each pixel value is represented as a double.

• 8ucX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a uint8.

2 Functions — Alphabetical List

2-92

• 8scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int8.

• 16ucX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int16.

• 16scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int16.

• 32scX images are returned as matrices of size MxNxD, where D is 1, 2, 3, or 4. Each
pixel value is represented as a int32.

• bayer_X images are returned as either Bayer matrices of size MxNx1, or as a
converted image of size MxNx3 (Image Processing Toolbox™ is required).

The following encoding for raw images of size MxN is supported using the
'sensor_msgs/CompressedImage' message type:

• rgb8, rgba8, bgr8, bgra8: img is an rgb image of size MxNx3. The alpha
channel is returned in alpha. Each output value is represented as a uint8.

See Also
writeImage

Introduced in R2015a

 readMessages

2-93

readMessages
Read messages from rosbag

Syntax

msgs = readMessages(bag)

msgs = readMessages(bag,rows)

Description

msgs = readMessages(bag) returns data from all of the messages in the
BagSelection object, bag. The messages are returned in a cell array of messages.

msgs = readMessages(bag,rows) returns data from messages in the rows specified
by rows. The maximum range of the rows is [1,bag.NumMessages].

Examples

Return All Messages as a Cell Array

allMsgs = readMessages(bagMsgs);

Return First Ten Messages

firstMsgs = readMessages(bagMsgs,1:10);

Input Arguments

bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSelection object.

rows — Rows of BagSelection object
n-by-2 matrix

2 Functions — Alphabetical List

2-94

Rows of BagSelection object, specified as an n-by-2 matrix, where n is the
number of rows to retrieve messages from. The maximum range of the rows is [1,
bag.NumMessage].

Output Arguments

msgs — ROS message object handle
handle | cell array

ROS message object handle, returned as a handle or cell array. ROS messages are
retrieved from the BagSelection object.

See Also
rosbag | select | timeseries

Introduced in R2015a

 readRGB

2-95

readRGB
Extract RGB values from point cloud data

Syntax

rgb = readXYZ(pcloud)

Description

rgb = readXYZ(pcloud) extracts the [r g b] values from all points in the point
cloud object, pcloud and returns them as an n-by-3 of n 3-D point coordinates. If
the point cloud does not contain the RGB field, this function will display an error. To
preserve the structure of the point cloud data, see “Preserving Point Cloud Structure” on
page 2-96.

Examples

Read RGB Values from Point Cloud Object

rgb = readRGB(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments

rgb — List of RGBv alues from point cloud
matrix

2 Functions — Alphabetical List

2-96

List of RGB values from point cloud, returned as a matrix. By default, this is a n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead
property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-96.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readXYZ

Introduced in R2015a

 readScanAngles

2-97

readScanAngles

Return scan angles for laser scan range readings

Syntax

angles = readScanAngles(scan)

Description

angles = readScanAngles(scan) calculates the scan angles, angles, corresponding
to the range readings in the laser scan message, scan. Angles are measured counter-
clockerwise around the positive z-axis, with the zero angle along the x-axis. angles is
returned in radians and wrapped to the [–pi, pi] interval.

Examples

Return Laser Scan Angles from Range Data

angles = readScanAngles(scan);

Input Arguments

scan — Laser scan message
LaserScan object handle

'sensor_msgs/LaserScan' ROS message, specified as a LaserScan object handle.

Output Arguments

angles — Scan angles for laser scan data
n–by–1 matrix in radians

2 Functions — Alphabetical List

2-98

Scan angles for laser scan data, returned as an n-by-1 matrix in radians. Angles are
measured counter-clockerwise around the positive z-axis, with the zero angle along the x-
axis. angles is returned in radians and wrapped to the [–pi, pi] interval.

See Also
plot | readCartesian

Introduced in R2015a

 readXYZ

2-99

readXYZ
Extract XYZ coordinates from point cloud data

Syntax

xyz = readXYZ(pcloud)

Description

xyz = readXYZ(pcloud) extracts the [x y z] coordinates from all points in the point
cloud object, pcloud, and returns them as an n-by-3 matrix of n 3-D point coordinates.
If the point cloud does not contain the x, y, and z fields, this function returns an error.
Points that contain NaN are preserved in the output. To preserve the structure of the
point cloud data, see “Preserving Point Cloud Structure” on page 2-100.

Examples

Read XYZ Coordinates from Point Cloud

xyz = readXYZ(pcloud);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Output Arguments

xyz — List of XYZ values from point cloud
matrix

2 Functions — Alphabetical List

2-100

List of XYZ values from point cloud, returned as a matrix. By default, this is a n-by-3
matrix. If the point cloud object being read has the PreserveStructureOnRead
property set to true, the points are returned as an h-by-w-by-3 matrix. For more
information, see “Preserving Point Cloud Structure” on page 2-100.

More About

Tips

Point cloud data can be organized in either 1-D lists or in 2-D image styles. 2-D image
styles usually come from depth sensors or stereo cameras. The input PointCloud2
object contains a PreserveStructureOnRead property that is either true or false
(default). Suppose you set the property to true.

pcloud.PreserveStructureOnRead = true;

Now calling any read functions (readXYZ,readRGB, or readField) preserves the
organizational structure of the point cloud. When you preserve the structure, the output
matrices are of size m-by-n-by-d, where m is the height, n is the width, and d is the
number of return values for each point. Otherwise, all points are returned as a x-by-d
list. This structure can only be preserved if the point cloud is organized.

See Also
readField | readRGB

Introduced in R2015a

 receive

2-101

receive
Wait for new ROS message

Syntax

msg = receive(sub)

msg = receive(sub,timeout)

Description

msg = receive(sub) waits for MATLAB to receive a topic message from the specified
subscriber, sub, and returns it as msg.

msg = receive(sub,timeout) specifies in timeout the number of seconds to wait for
a message. If a message is not received within the timeout limit, the software throws an
error.

Examples

Create Subscriber and Receive Data

laser = rossubscriber('/scan', rostype.sensor_msgs_LaserScan);

scan = receive(laser);

Receive Data with a Two Second Timeout

scan = receive(sub,2);

Input Arguments

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the subscriber
using rossubscriber.

2 Functions — Alphabetical List

2-102

timeout — Timeout for receiving a message
scalar in seconds

Timeout for receiving a message, specified as a scalar in seconds.

Output Arguments

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also
rosmessage | rossubscriber | rostopic

Introduced in R2015a

 roboticsSupportPackages

2-103

roboticsSupportPackages
Download and install support packages for Robotics System Toolbox

Syntax

roboticsSupportPackages

Description

roboticsSupportPackages opens the Support Package Installer to download and
install support packages for Robotics System Toolbox™. For more details, see “Install
Robotics System Toolbox Support Packages”

Examples

Open Robotics System Toolbox Support Package Installer

roboticsSupportPackages

Introduced in R2015a

2 Functions — Alphabetical List

2-104

rosbag
Open and parse rosbag log file

Syntax

bag = rosbag(filename)

Description

bag = rosbag(filename) creates an indexable BagSelection object, bag, that
contains all the message indexes from the rosbag located at path filename. To access
the data, you can call readMessages or timeseries to extract relevant data.

A rosbag, or bag, is a file format for storing ROS message data. They are used primarily
to log messages within the ROS network. You can use these bags for offline analysis,
visualization, and storage.

This function supports version 2.0 of the rosbag file format. It also supports only
uncompressed rosbags. See the ROS Wiki page for more information about rosbags and
Bag version 2.0.

Examples

Retrieve Information from rosbag

Set the path to a rosbag file.

 filePath = 'path/to/logfile.bag';

Retrieve information from the rosbag.

 bagselect = rosbag(filePath)

Select a subset of the messages, filtered by time and topic

 bagselect2 = select(bagselect, 'Time', ...

http://wiki.ros.org/rosbag
http://wiki.ros.org/Bags/Format/2.0

 rosbag

2-105

[bagselect.StartTime bagselect.StartTime + 1], 'Topic', '/odom')

Input Arguments

filename — Name of rosbag file and its path
string

Name of file and its path, for the rosbag you want to access, specified as a string. This
path can be relative or absolute.

Output Arguments

bag — Selection of rosbag messages
BagSelection object handle

Selection of rosbag messages, returned as a BagSelection object handle.

See Also
readMessages | select | timeseries

Introduced in R2015a

2 Functions — Alphabetical List

2-106

rosgenmsg
Generate custom messages from ROS definitions

Syntax
rosgenmsg(folderpath)

Description
rosgenmsg(folderpath) generates ROS custom messages in MATLAB by reading
ROS custom message and service definitions in the specified folder path. The function
expects ROS package folders inside the folder path. These packages contain the message
definitions in .msg files and the service definitions in .srv files. Also, the packages
require a package.xml file to define its contents.

After calling this function, you can send and receive your custom messages in MATLAB
like all other supported messages. You can create these messages using rosmessage or
view the list of messages by calling rosmsg list.

Examples

Generate MATLAB Code for ROS Custom Messages

folderpath = 'C:/Users/user1/Documents/robot_custom_msg/';

rosgenmsg(folderpath)

• “Create Custom Messages from ROS Package”

Input Arguments

folderpath — Path to ROS package folders
string

Path to package folders, specified as a string. These folders contain message definitions
in .msg files and the service definitions in .srv files. Also, the packages require a
package.xml file to define its contents.

 rosgenmsg

2-107

More About
• “ROS Custom Message Support”
• ROS Tutorials: Defining Custom Messages
• ROS Tutorials: Creating a ROS msg and srv

See Also
roboticsSupportPackages

Introduced in R2015a

http://wiki.ros.org/ROS/Tutorials/DefiningCustomMessages
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv

2 Functions — Alphabetical List

2-108

rosinit
Connect to ROS network

Syntax

rosinit

rosinit(hostname)

rosinit(hostname,port)

rosinit(URI)

rosinit(___ ,Name,Value)

Description

rosinit starts the global ROS node with a default MATLAB name and tries to connect
to a ROS master running on localhost and port 11311. If the global ROS node cannot
connect to the ROS master, rosinit also starts a ROS core in MATLAB, which consists
of a ROS master, a ROS parameter server, and a rosout logging node.

rosinit(hostname) tries to connect to the ROS master at the host name or IP address
specified by hostname. This syntax uses 11311 as the default port number.

rosinit(hostname,port) tries to connect to the host name or IP address specified by
hostname and the port number specified by port.

rosinit(URI) tries to connect to the ROS master at the given resource identifier, URI,
for example, 'http://192.168.1.1:11311'.

rosinit(___ ,Name,Value) provides additional options specified by one
or more Name,Value pair arguments. Name must appear inside single quotes
(' '). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Using rosinit is a prerequisite for most ROS-related tasks in MATLAB because:

• Communicating with a ROS network requires a ROS node connected to a ROS
master.

 rosinit

2-109

• By default, ROS functions in MATLAB operate on the global ROS node, or they
operate on objects that depend on the global ROS node.

For example, after creating a global ROS node with rosinit, you can subscribe to
a topic on the global ROS node. When another node on the ROS network publishes
messages on that topic, the global ROS node receives the messages.

If a global ROS node already exists, then rosinit restarts the global ROS node based on
the new set of arguments.

Examples

Start ROS Core and Global Node

rosinit

Initializing ROS master on http://hostname.mathworks.com:11311/.

Initializing global node /matlab_global_node_9152 with NodeURI http://hostname:54194/

Start Node and Connect to ROS Master at Specified IP Address

rosinit('192.168.1.10')

Initializing global node /matlab_tped50a5c2_4448_4d11_a523_9829a6b3b5af with NodeURI http://192.168.1.1:63874/

Start Global Node at Given IP and Node Name

rosinit('192.168.1.10', 'NodeHost','192.168.1.1','NodeName','/test_node')

Initializing global node /test_node with NodeURI http://192.168.1.1:64053/

Input Arguments

hostname — Host name or IP address
string

Host name or IP address, specified as a string.

2 Functions — Alphabetical List

2-110

port — Port number
scalar

Port number used to connect to the ROS master, specified as a scalar.

URI — URI for ROS master
string

URI for ROS master, specified as a string. Standard format for URIs is either http://
ipaddress:port or http://hostname:port

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NodeHost','192.168.1.1'

'NodeHost' — Host name or IP address
string

Host name or IP address under which the node advertises itself to the ROS network,
specified as the comma-separated pair consisting of’ 'NodeHost' and a string.
Example: 'comp-home'

'NodeName' — Global node name
string

Global node name, specified as the comma-separated pair consisting of 'NodeName' and a
string. The node that is created through rosinit is registered on the ROS network with
this name.
Example: 'NodeName','/test_node'

See Also
rosshutdown

Introduced in R2015a

 rosmessage

2-111

rosmessage

Create ROS messages

Syntax

msg = rosmessage(messagetype)

msg = rosmessage(pub)

msg = rosmessage(sub)

msg = rosmessage(client)

msg = rosmessage(server)

Description

msg = rosmessage(messagetype) creates an empty ROS message object with
message type. The messagetype string is case-sensitive and no partial matches are
allowed. It must match a message on the list given by calling rosmsg('list'). To avoid
errors in entering the message type, you can use rostype with tab completion to browse
the list of all available types.

msg = rosmessage(pub) creates an empty message determined by the topic published
by pub.

msg = rosmessage(sub) creates an empty message determined by the subscribed
topic of sub.

msg = rosmessage(client) creates an empty message determined by the service
associated with client.

msg = rosmessage(server) creates an empty message determined by the service type
of server.

2 Functions — Alphabetical List

2-112

Examples

Create Empty String Message

 strMsg = rosmessage('std_msgs/String');

Create Laser Scan Message using rostype

 scan = rosmessage(rostype.sensor_msgs_LaserScan);

Create Message to Publish using ROS Publisher

chatpub = rospublisher('/chatter','std_msgs/String');

chatmsg = rosmessage(chatpub);

Input Arguments

messagetype — Message type
string

Message type, specified as a string. The string is case-sensitive and no partial matches
are allowed. It must match a message on the list given by calling rosmsg('list'). To
avoid errors in entering the message type, you can use rostype with tab completion to
browse the list of all available types.

pub — ROS publisher
Publisher object handle

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

sub — ROS subscriber
Subscriber object handle

ROS subscriber, specified as a Subscriber object handle. You can create the object
using rossubscriber.

client — ROS service client
ServiceClient object handle

ROS service client, specified as a ServiceClient object handle. You can create the
object using rossvcclient.

 rosmessage

2-113

server — ROS service server
ServiceServer object handle

ROS service server, specified as a ServiceServer object handle. You can create the
object using rossvcserver.

Output Arguments

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

More About
• “Built-In Message Support”

See Also
roboticsSupportPackages | rosmsg | rostype

Introduced in R2015a

2 Functions — Alphabetical List

2-114

rosmsg
Retrieve information about ROS messages and message types

Syntax

rosmsg show msgtype

rosmsg md5 msgtype

rosmsg list

msginfo = rosmsg('show', msgtype)

msgmd5 = rosmsg('md5', msgtype)

msglist = rosmsg('list')

Description

rosmsg show msgtype returns the definition of the msgtype message.

rosmsg md5 msgtype returns the MD5 checksum of the msgtype message.

rosmsg list returns all available message types that you can use in MATLAB.

msginfo = rosmsg('show', msgtype) returns the definition of the msgtype
message as a string.

msgmd5 = rosmsg('md5', msgtype) returns the ‘MD5’ checksum of the msgtype
message as a string.

msglist = rosmsg('list') returns a cell array containing all available message
types that you can use in MATLAB.

Examples

Retrieve Message Type Definition

msgInfo = rosmsg('show','geometry_msgs/Point')

msgInfo =

 rosmsg

2-115

% This contains the position of a point in free space

double X

double Y

double Z

Get the MD5 Checksum of Message Type

msgMd5 = rosmsg('md5','geometry_msgs/Point')

msgMd5 =

4a842b65f413084dc2b10fb484ea7f17

Input Arguments

msgtype — ROS message type
string

ROS message type, specified as a string. msgType must be a valid ROS message type
from ROS that MATLAB supports.
Example: 'std_msgs/Int8'

Output Arguments

msginfo — Details of message definition
string

Details of the information inside the ROS message definition, returned as a string.

msgmd5 — MD5 checksum hash value
string

MD5 checksum hash value, returned as a string. The MD5 output is a string
representation of the 16-byte hash value that follows the MD5 standard.

msglist — List of all message types available in MATLAB
cell array of strings

List of all message types available in MATLAB, returned as a cell array of strings.

2 Functions — Alphabetical List

2-116

Introduced in R2015a

 rosnode

2-117

rosnode
Retrieve information about ROS network nodes

Syntax
rosnode list

rosnode info nodename

rosnode ping nodename

nodelist = rosnode('list')

nodeinfo = rosnode('info',nodename)

rosnode('ping',nodename)

Description
rosnode list returns a list of all nodes registered on the ROS network. Use these
nodes to exchange data between MATLAB and the ROS network.

rosnode info nodename returns a structure containing the name, URI, publications,
subscriptions, and services of a specific ROS node,nodename.

rosnode ping nodename pings a specific node, nodename, and displays the response
time.

nodelist = rosnode('list') returns a cell array of strings containing the nodes
registered on the ROS network.

nodeinfo = rosnode('info',nodename) returns a structure containing the name,
URI, publications, subscriptions, and services of a specific ROS node, nodename.

rosnode('ping',nodename) pings a specific node, nodename and displays the
response time.

Examples
Retrieve List of ROS Nodes

rosnode list

2 Functions — Alphabetical List

2-118

/bumper2pointcloud

/cmd_vel_mux

/depthimage_to_laserscan

/gazebo

/laserscan_nodelet_manager

/matlab_tp8cc35a0e_35fd_4f70_9886_9e489b95b611

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

Retrieve ROS Node Info

nodeinfo = rosnode('info','/robot_state_publisher')

nodeinfo =

 NodeName: '/robot_state_publisher'

 URI: 'http://192.168.154.132:58140/'

 Publications: [2x1 struct]

 Subscriptions: [2x1 struct]

 Services: [2x1 struct]

Ping ROS Node

rosnode('ping','/robot_state_publisher')

Pinging the /robot_state_publisher node with a timeout of 3 seconds.

Ping reply from http://192.168.154.132:58140/, response time = 2.920 ms.

Ping reply from http://192.168.154.132:58140/, response time = 2.138 ms.

Ping reply from http://192.168.154.132:58140/, response time = 2.194 ms.

Ping reply from http://192.168.154.132:58140/, response time = 4.607 ms.

Ping average time: 2.965 ms

Input Arguments

nodename — Name of node
string

Name of node, specified as a string. The name of the node must match the name given in
ROS.

 rosnode

2-119

Output Arguments

nodeinfo — Information about ROS node
structure

Information about ROS node, returned as a structure containing these properties:
'NodeName', 'URI', 'Publications', 'Subscriptions', and 'Services'. Access
these properties using dot syntax, for example, nodeinfo.NodeName.

nodelist — List of node names available
cell array of strings

List of node names available, returned as a cell array of strings.

See Also
rosinit | rostopic

Introduced in R2015a

2 Functions — Alphabetical List

2-120

rosparam
Access ROS parameter server values

Syntax

ptree = rosparam

Description

ptree = rosparam creates a parameter tree object, ptree. Once ptree is created, the
connection to the parameter server remains persistent until the object is deleted or the
ROS master becomes unavailable.

A ROS parameter tree communicates with the ROS parameter server. The ROS
parameter server can store strings, integers, doubles, booleans and cell arrays. The
parameters are accessible by every node in the ROS network. Use the parameters to
store static data such as configuration parameters. Use the get, set, has, search, and
del functions to manipulate and view parameter values.

Examples

Create Parameter Tree Object and View Parameters

ptree = rosparam

ptree =

 ParameterTree with properties:

 AvailableParameters: {40x1 cell}

ptree.AvailableParameters

ans =

 '/bumper2pointcloud/pointcloud_radius'

 '/camera/imager_rate'

 rosparam

2-121

 '/camera/rgb/image_raw/compressed/format'

 ...

Output Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, returned as a ParameterTree object handle. Use this object to reference
parameter information, for example, ptree.AvailableFrames.

See Also
del | get | has | search | set

Introduced in R2015a

2 Functions — Alphabetical List

2-122

rospublisher
Publish messages on a topic

Syntax

pub = rospublisher(topicname)

pub = rospublisher(topicname,msgtype)

pub = rospublisher(___ ,Name,Value)

[pub,msg] = rospublisher(___)

rospublisher(topicname,msg)

Description

pub = rospublisher(topicname) creates a publisher, pub, for a topic, topicname,
that already exists on the ROS master topic list. The publisher gets the topic message
type from the topic list on the ROS master. When the MATLAB global node publishes
messages on that topic, ROS nodes that subscribe to that topic receive those messages.
If the topic is not on the ROS master topic list, this function displays an error message.
To see a list of available topic names, at the MATLAB command prompt, type rostopic
list/

pub = rospublisher(topicname,msgtype) creates a publisher for a topic and adds
that topic to the ROS master topic list. If the ROS master topic list already contains a
matching topic, the ROS master adds the MATLAB global node to the list of publishers
for that topic. If msgtype differs from the topic type on the ROS master topic list, the
function displays an error message.

pub = rospublisher(___ ,Name,Value) provides additional options specified by one
or more Name,Value pair arguments using any of the argument from previous syntaxes.
Name is the property name and Value is the corresponding value. Name must appear
inside single quotes (''). You can specify several name-value pair arguments in any
order as Name1,Value1,...,NameN,ValueN). Properties not specified retain their
default values.

[pub,msg] = rospublisher(___) returns a message, msg, that you can send with
the publisher, pub. The message is initialized with default values.

 rospublisher

2-123

rospublisher(topicname,msg) publishes a message, msg, to the specified topic
without creating a publisher.

Examples

Create a Publisher with Specified Message Type and Send String Data

chatpub = rospublisher('/chatter','std_msgs/String');

msg = rosmessage(chatpub);

msg.Data = 'Some test string';

send(chatpub,msg);

Send Single Message Without Creating a Publisher

rospublisher('/chatter',msg)

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string.

msgtype — Message type for ROS topic
string

ROS message type, specified as a string.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'IsLatching',false

'IsLatching' — Latch property
true (default) | logical

2 Functions — Alphabetical List

2-124

Latch property, specified as the comma-seperated pair consisting of 'isLatching and a
logical. If enabled, latch mode saves the last message sent by the publisher and resends it
to new subscribers. By default, latch mode is disabled (false). To enable latch mode, set
'IsLatching' to true.

Output Arguments

pub — ROS publisher
Publisher object handle

ROS publisher, returned as a Publisher object handle.

Properties: When you call rospublisher, pub is returned as a Publisher object with
the following properties:

• TopicName (read-only): Name of the published topic
• MessageType (read-only): Message type of published messages
• IsLatching: Indicates if publisher is latching
• NumSubscribers (read-only): Number of current subscribers for the published topic

To access these properties, use pub.TopicName, pub.MessageType, pub.IsLatching,
or pub.NumSubscribers.

msg — ROS message
Message object handle

ROS message, returned as a Message object handle.

See Also
rosmessage | rossubscriber

Introduced in R2015a

 rosservice

2-125

rosservice
Retrieve information about services in ROS network

Syntax

rosservice list

rosservice info svcname

rosservice type svcname

rosservice uri svcname

svclist = rosservice('list')

svcinfo = rosservice('info',svcname)

svctype = rosservice('type',svcname)

svcuri = rosservice('uri',svcname)

Description

rosservice list returns a list of service names for all of the active service servers on
the ROS network.

rosservice info svcname returns information about the specified service, svcname.

rosservice type svcname returns the service type.

rosservice uri svcname returns the URI of the service.

svclist = rosservice('list') returns a list of service names for all of the active
service servers on the ROS network. svclist contains a cell array of service names.

svcinfo = rosservice('info',svcname) returns a structure of information,
svcinfo, about the service, svcname.

svctype = rosservice('type',svcname) returns the service type of the service as
a string.

svcuri = rosservice('uri',svcname) returns the URI of the service as a string.

2 Functions — Alphabetical List

2-126

Examples

View List of ROS Services

rosservice list

/bumper2pointcloud/get_loggers

/bumper2pointcloud/set_logger_level

/camera/rgb/image_raw/compressed/set_parameters

...

Get Information, Type and URI for ROS Service

Get the service information.

svcinfo = rosservice('info','gazebo/pause_physics')

svcinfo =

 Node: '/gazebo'

 URI: 'rosrpc://192.168.154.132:33953'

 Type: 'std_srvs/Empty'

 Args: {}

Get the service type.

svctype = rosservice('type','gazebo/pause_physics')

svctype =

std_srvs/Empty

Get the service URI.

svcuri = rosservice('uri','gazebo/pause_physics')

svcuri =

rosrpc://192.168.154.132:33953

Input Arguments

svcname — Name of service
string

 rosservice

2-127

Name of service, specified as a string. The service name must match its name in the ROS
network.

Output Arguments

svcinfo — Information about a ROS service
string

Information about a ROS service, returned as a string.

svclist — List of available ROS services
cell array of strings

List of available ROS services, returned as a cell array of strings.

svctype — Type of ROS service
string

Type of ROS service, returned as a string.

svcuri — URI for accessing service
string

URI for accessing service, returned as a string.

See Also
rosinit | rosparam

Introduced in R2015a

2 Functions — Alphabetical List

2-128

rosshutdown
Shut down ROS system

Syntax

rosshutdown

Description

rosshutdown shuts down the global node and, if it is running, the ROS master. When
you finish working with the ROS network, use rosshutdown to shut down the global
ROS entities created by rosinit. If the global node and ROS master are not running,
this function has no effect. After calling rosshutdown, any ROS entities that depend on
the global node, for example, subscribers created with rossubscriber, are deleted and
become unstable.

Examples

Shut Down Global ROS Node

rosshutdown

Shutting down global node /matlab_global_node_9220 with NodeURI http://hostname:54335/

Shutting down ROS master on http://hostname.mathworks.com:11311/.

See Also
rosinit

Introduced in R2015a

 rossubscriber

2-129

rossubscriber

Subscribe to messages on a topic

Syntax

sub = rossubscriber(topicname)

sub = rossubscriber(topicname,msgtype)

sub = rossubscriber(topicname,callback)

sub = rossubscriber(topicname, msgtype,callback)

sub = rossubscriber(___ ,Name,Value)

Description

sub = rossubscriber(topicname) subscribes to a topic with name topicname. If
the ROS master topic list includes topicname, this syntax returns a subscriber object
handle, sub. If the ROS master topic list does not include the topic, this syntax displays
an error. rossubscriber enables you to transfer data by subscribing to messages.
When ROS nodes publish messages on that topic, MATLAB receives those messages
through this subscriber.

sub = rossubscriber(topicname,msgtype) subscribes to a topic that has the
specified name, topicname, and type, msgtype. If the topic list on the ROS master does
not include a topic with that specified name and type, a topic with the specific name and
type is added to the topic list. Use this syntax to avoid errors when it is possible for the
subscriber to subscribe to a topic before a publisher has added the topic to the topic list
on the ROS master.

sub = rossubscriber(topicname,callback) specifies a callback function,
callback that runs when the subscriber object handle receives a topic message. Use
this syntax to avoid the blocking receive function. callback can be a single function
handle or a cell array. The first element of the cell array must be be a function handle or
a string containing the name of a function. The remaining elements of the cell array can
be arbitrary user data that is passed to the callback function.

2 Functions — Alphabetical List

2-130

sub = rossubscriber(topicname, msgtype,callback) specifies a callback
function and subscribes to a topic that has the specified name, topicname, and type,
msgtype.

sub = rossubscriber(___ ,Name,Value) provides additional options specified
by one or more Name,Value pair arguments using any of the argument from previous
syntaxes. Name is the property name and Value is the corresponding value. Name must
appear inside single quotes (''). You can specify several name-value pair arguments in
any order as Name1,Value1,...,NameN,ValueN). Properties not specified retain their
default values.

Examples

Create Subscriber

sub = rossubscriber('/scan');

Create Subscriber Using rostype for Message Type

Create the subscriber.

sub = rossubscriber('/scan', rostype.sensor_msgs_LaserScan);

Get the last message from the topic.

scan = sub.LatestMessage;

Wait to receive the next message and store in scan.

scan = receive(sub);

Create Subscriber Using Callback Function

Create the publisher and subscriber.

 chatpub = rospublisher('/chatter', rostype.std_msgs_String);

 chatsub = rossubscriber('/chatter', @testCallback);

Change the Callback Function of Existing Subscriber

 chatsub = rossubscriber('/chatter', @testCallback);

 userData = [5 1; 1 5];

 rossubscriber

2-131

 chatsub.NewMessageFcn = {@func1, userData};

Create Subscriber with Specified Buffer Size

 chatbuf = rossubscriber('/chatter', 'BufferSize', 5);

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string.

msgtype — Message type for ROS topic
string

Message type for ROS topic, specified as a string.

callback — Callback function
function handle | cell array

Callback function, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

2 Functions — Alphabetical List

2-132

Example: 'Buffersize',25

'BufferSize' — Buffer size
1 (default) | scalar

Buffer size, specified as the comma-separated pair consisting of 'BufferSize' and a
scalar. If messages arrive faster and than your callback can process them, they will be
deleted once the incoming queue is full.

'NewMessageFcn' — Callback property
function handle | cell array

Callback property, specified as a function handle or cell array. In the first element of the
cell array, specify either a function handle or a string representing a function name. In
subsequent elements, specify user data.

The subscriber callback function requires at least two input arguments. The first
argument, src, is the associated subscriber object. The second argument, msg, is the
received message object. The function header for the callback is:

function subCallback(src,msg)

When setting the callback, you pass additional parameters to the callback function by
including both the callback function and the parameters as elements of a cell array.

Output Arguments

sub — ROS subscriber
Subscriber object handle

ROS subscriber, returned as a Subscriber object handle. You can create the object
using rossubscriber.

Properties: When you call rossubscriber, sub is returned as a Subscriber object
with the following properties:

• TopicName (read-only): Name of the published topic
• MessageType (read-only): Message type of published messages
• LatestMessage (read-only): Latest message received
• BufferSize (read-only): Buffer size of the incoming queue

 rossubscriber

2-133

• NewMessageFcn: Callback property for subscriber callbacks

To access these properties, use sub.TopicName, sub.MessageType,
sub.LatestMessage, sub.BufferSize, or sub.NewMessageFcn.

See Also
rosmessage | rospublisher

Introduced in R2015a

2 Functions — Alphabetical List

2-134

rossvcclient

Create ROS service client

Syntax

client = rossvcclient(servicename)

client = rossvcclient(servicename,Name,Value)

[client,reqmsg] = rossvcclient(___)

Description

client = rossvcclient(servicename) creates a service client that connects to,
and gets its service type from, a service server. This command syntax blocks the current
MATLAB program from running until it can connect to the service server.

Use rossvcclient to create a ROS service client. This service client uses a persistent
connection to send requests to, and receive responses from, a ROS service server. The
connection persists until the service client is deleted or the service server becomes
unavailable.

client = rossvcclient(servicename,Name,Value) provides additional options
specified by one or more Name,Value pair arguments. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

[client,reqmsg] = rossvcclient(___) returns a new service request message
in reqmsg, using any of the arguments from previous syntaxes. The message type
of reqmsg is determined by the service that client is connected to. The message is
initialized with default values.

 rossvcclient

2-135

Examples

Create Service Client and Wait to Connect to Service

 client = rossvcclient('/gazebo/get_model_state');

Connect to Service Server with Timeout

 client = rossvcclient('/gazebo/get_model_state', 'Timeout', 3);

Create Service Request Message and Call for Response

Create the service request message.

 request = rosmessage(client);

Send the service request and wait for a response.

 request.ModelName = 'SomeModel';

 response = call(client, request);

Create a Service Client and Get a Request Message

 [client,reqmsg] = rossvcclient('/gazebo/get_model_state');

Input Arguments

servicename — Service name
string

Service name, specified as a string. To access information about active services, such as
the service name, use the rosservice function.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'Timeout',10

2 Functions — Alphabetical List

2-136

'Timeout' — Timeout period in seconds
inf (default) | scalar

Timeout period in seconds, specified as a scalar. If the service client does not connect
to the service server by the end of the timeout period, rossvcclient displays an error
message, and MATLAB keeps running the current program. The default value of inf
blocks MATLAB from running the current program until the service client is connected
to the service server.

Output Arguments

client — ROS service client
ServiceClient object handle

ROS service client, returned as a ServiceClient object handle. This service client uses
a persistent connection to send requests to, and receive responses from, a ROS service
server.

ROS message, returned as a Message object handle that matches the request type of the
service.

Properties: When you call rossubscriber, client is returned as a ServiceClient
object with the following properties:

• ServerName (read-only): Name of the service
• ServiceType (read-only): Type of the service

To access these properties, use client.ServerName or client.ServerType.

reqmsg — ROS message
Message object handle

See Also
call | rosservice | rossvcserver

Introduced in R2015a

 rossvcserver

2-137

rossvcserver

Create ROS service server

Syntax

server = rossvcserver(servicename,svctype)

server = rossvcserver(servicename,svctype,callback)

servicename = rossvcserver(servicename,svctype,Name,Value)

Description

server = rossvcserver(servicename,svctype) creates a service server object of
type svctype available in the ROS network under the name servicename. The service
object cannot respond to service requests until you specify a function handle callback.

Use rossvcserver to create a ROS service server that can receive requests from, and
send responses to, a ROS service client. The service server must exist before creating the
service client. When you create the client, it establishes a connection to the server. The
connection persists while both client and server exist and can reach each other.

server = rossvcserver(servicename,svctype,callback) specifies the function
handle callback, callback, that constructs a response when the server receives a
request. callback can be a single function handle or a cell array. The first element of
the cell array must be a function handle or a string containing the name of a function.
The remaining elements of the cell array can be arbitrary user data that is passed to the
callback function.

servicename = rossvcserver(servicename,svctype,Name,Value)

provides additional options specified by one or more Name,Value pair arguments
using any of the argument from previous syntaxes. Name is the property name
and Value is the corresponding value. Name must appear inside single quotes
(''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN). Properties not specified retain their default
values.

2 Functions — Alphabetical List

2-138

Examples

Create Service Server

 server = rossvcserver('/gazebo/get_model_state', rostype.gazebo_msgs_GetModelState);

Create Service Server with Callback Function and User Data

Create user data.

 userData = randi(20);

Create a service server.

 server = rossvcserver('/gazebo/get_model_state2', rostype.gazebo_msgs_GetModelState, ...

 {@func1, userData});

Change the callback for a incoming service calls.

server.NewRequestFcn = @func2;

Input Arguments

servicename — Service name
string

Service name, specified as a string. You can access information about active services,
such as the service name, using rosservice.

svctype — Service message type
string

Service message type, specified as a string. You can access information about service
message types using rostype. Use tab completion to select the message.

callback — Callback function and inputs
function handle | cell array

Callback function and inputs, specified as a function handle or a cell array. The first
element of the cell array must be a function handle or a string containing the name of

 rossvcserver

2-139

a function. The remaining elements of the cell array can be arbitrary user data that is
passed to the callback function. The service server callback function requires at least
three input arguments and one output. The first argument, server, is the associated
service server object. The second argument, reqmsg, is the request message object
sent by the service client. The third argument is the default response message object,
defaultrespmsg. Use defaultrespmsg as a starting point for constructing the
function output response, which is sent back to the service client.

function response = serviceCallback(server,reqmsg,defaultrespmsg)

 response = defaultrespmsg;

 % Build the response message here

end

While setting the callback, to construct a callback that accepts additional parameters,
use a cell array that includes the function handle callback and the parameters.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'NewMessageFcn',{@func1,userDate}

'NewMessageFcn' — Callback property
function handle | cell array

Callback property, specified as a function handle or a cell array. The first element of
the cell array must be a function handle or a string containing the name of a function.
The remaining elements of the cell array can be arbitrary user data that is passed
to the callback function. The service server callback function requires at least three
input arguments and one output. The first argument, server, is the associated
service server object. The second argument, reqmsg, is the request message object
sent by the service client. The third argument is the default response message object,
defaultrespmsg. Use defaultrespmsg as a starting point for constructing the
function output response, which is sent back to the service client.

function response = serviceCallback(server,reqmsg,defaultrespmsg)

 response = defaultrespmsg;

 % Build the response message here

end

2 Functions — Alphabetical List

2-140

While setting the callback, to construct a callback that accepts additional parameters,
use a cell array that includes the function handle callback and the parameters.

Output Arguments

server — Service server
ServiceServer object handle

Service server, returned as a ServiceServer object handle. This service server registers
with the ROS master, which enables service clients to send it requests.

Properties: When you call rossubscriber, server is returned as a ServiceServer
object with the following properties:

• ServerName (read-only): Name of the service
• ServiceType (read-only): Type of the service
• NewRequestFcn: Callback property for service request callbacks

To access these properties, use client.ServerName, client.ServerType, or
client.NewRequestFcn.

See Also
rossvcclient

Introduced in R2015a

 rostf

2-141

rostf
Access ROS transformations

Syntax
tfTree = rostf

Description
tfTree = rostf creates a ROS transformation tree object. The object allows you
to access the tf coordinate transformations that are shared on the ROS network. You
can receive transformations and apply them to different entities. You can also send
transformations and share them with the rest of the ROS network.

ROS uses the tf transform library to keep track of the relationship between multiple
coordinate frames. The relative transformations between these coordinate frames is
maintained in a tree structure. Querying this tree lets you transform entities like poses
and points between any two coordinate frames. To access available frames use the
syntax:

tfTree.AvailableFrames

MATLAB can only keep track of the most current information between different frames.
ROS tf allows for “time-traveling” or retrieving transformations from specific time
instances.

Examples

Create Transformation Tree

tree = rostf;

Output Arguments

tfTree — ROS transformation tree
TransformationTree object handle

2 Functions — Alphabetical List

2-142

ROS transformation tree, returned as a TransformationTree object handle.

See Also
getTransform | transform

Introduced in R2015a

 rostime

2-143

rostime
Access ROS time functionality

Syntax

time = rostime('now')

[time,issimtime] = rostime('now')

time = rostime('now','system')

Description

time = rostime('now') returns the current ROS time. If the use_sim_time ROS
parameter is set to true, the rostime returns the simulation time published on the
clock topic. Otherwise, the function returns your machine’s system time. time is a ROS
Time object. If no output argument is given, the current time (in seconds) is printed to
the screen.

rostime can be used to timestamp messages or to measure time in the ROS network.

[time,issimtime] = rostime('now') also returns a Boolean that indicates if time
is in simulation time (true) or system time (false).

time = rostime('now','system') always returns your machine's system time, even
if ROS publishes simulation time on the clock topic. If no output argument is given, the
system time (in seconds) is printed to the screen.

The system time in ROS follows the Unix or POSIX time standard. POSIX time is
defined as the time that has elapsed since 00:00:00 Coordinated Universal Time (UTC), 1
January 1970, not counting leap seconds.

Examples

Show Current ROS Time

 t = rostime('now')

2 Functions — Alphabetical List

2-144

t =

 ROS Time with properties:

 Sec: 1417812065

 Nsec: 368000000

Indicate Whether Time is System Time

 [t,issim] = rostime('now');

t =

 ROS Time with properties:

 Sec: 1417812173

 Nsec: 171000000

issim =

 0

Timestamp Message Data

 point = rosmessage('geometry_msgs/PointStamped');

 point.Header.Stamp = rostime('now','system');

ROS Time to MATLAB Time Example

This example shows how to convert current ROS time into a MATLAB® standard time.
The ROS Time object is first converted to a double in seconds, then to the specified
MATLAB time.

% Sets up ROS network and stores ROS time

rosinit

t = rostime('now');

% Converts ROS time to a double in seconds

secondtime = double(t.Sec)+double(t.Nsec)*10^-9;

% Sets time to a specified MATLAB format

time = datetime(secondtime, 'ConvertFrom','posixtime')

% Shuts down ROS network

 rostime

2-145

rosshutdown

Initializing ROS master on http://bat5236win64:11311/.

Initializing global node /matlab_global_node_23846 with NodeURI http://bat5236win64:56526/

time =

 24-Aug-2015 21:12:02

Shutting down global node /matlab_global_node_23846 with NodeURI http://bat5236win64:56526/

Shutting down ROS master on http://bat5236win64:11311/.

Output Arguments

time — Current ROS or system time
Time object handle

Current ROS or system time, returned as a Time object handle. By default, time
is the ROS simulation time published on the clock topic. If the system time if the
use_sim_time ROS parameter is set to true, time returns the system time..

issimtime — System time indicator
boolean

System time indicator, returned as a boolean. This indicates whether the time argument
is in simulation time (true) or system time (false), returned as a Boolean.

See Also
rosmessage

Introduced in R2015a

2 Functions — Alphabetical List

2-146

rostopic
Retrieve information about ROS topics

Syntax

rostopic list

rostopic echo topicname

rostopic info topicname

rostopic type topicname

topiclist = rostopic('list')

msg = rostopic('echo', topicname)

topicinfo = rostopic('info', topicname)

msgtype = rostopic('type', topicname)

Description

rostopic list returns a list of ROS topics from the ROS master.

rostopic echo topicname returns the messages being sent from the ROS master
about a specific topic, topicname. To stop returning messages, press Ctrl+C.

rostopic info topicname returns the message type, publishers, and subscribers for
a specific topic, topicname.

rostopic type topicname returns the message type for a specific topic.

topiclist = rostopic('list') returns a cell array containing the ROS topics from
the ROS master. If you do not define the output argument, the list is returned in the
MATLAB Command Window.

msg = rostopic('echo', topicname) returns the messages being sent from the
ROS master about a specific topic, topicname. To stop returning messages, press Ctrl
+C. If the output argument is defined, then rostopic returns the first message that
arrives on that topic.

topicinfo = rostopic('info', topicname) returns a structure containing the
message type, publishers, and subscribers for a specific topic, topicname.

 rostopic

2-147

msgtype = rostopic('type', topicname) returns a string containing the message
type for the specified topic, topicname.

Examples

Get Llist of Topics Available on ROS Master

 rostopic list

/camera/depth/camera_info

/camera/depth/image_raw

/camera/depth/points

/camera/parameter_descriptions

...

Get Topic Info for Specified ROS Topic

 topicinfo = rostopic('info','camera/depth/points')

topicinfo =

 MessageType: 'sensor_msgs/PointCloud2'

 Publishers: [1x1 struct]

 Subscribers: [0x0 struct]

Get Message Type for Specified ROS Topic

 msgtype = rostopic('type','camera/depth/points')

msgtype =

sensor_msgs/PointCloud2

Input Arguments

topicname — ROS topic name
string

ROS topic name, specified as a string. The topic name must match one of the topics
thatrostopic('list') outputs.

2 Functions — Alphabetical List

2-148

Output Arguments

topiclist — List of topics from the ROS master
cell array of strings

List of topics from ROS master, returned as a cell array of strings.

msg — ROS message for a given topic
object handle

ROS message for a given topic, returned as an object handle.

topicinfo — Information about a given ROS topic
structure

Information about a ROS topic, returned as a structure. topicinfo included the
message type, publishers, and subscribers associated with that topic.

msgtype — Message type for a ROS topic
string

Message type for a ROS topic, returned as a string.

Introduced in R2015a

 rostype

2-149

rostype
Access available ROS message types

Syntax

rostype

Description

rostype creates a blank message of a certain type by browsing the list of available
message types. You can use tab completion and do not have to rely on typing error-free
message type strings. By typing rostype.partialstring , and pressing Tab, a list
of matching message types appears in a list. By setting the message type equal to a
variable, you can create a string of that message type. Alternatively, you can create the
message by supplying the message type directly into rosmessage as an input argument.

Examples

Create ROS Message Type and ROS Message

 t = rostype.std_msgs_String

 msg = rosmessage(rostype.sensor_msgs_PointCloud2);

Introduced in R2015a

2 Functions — Alphabetical List

2-150

rotm2axang
Convert rotation matrix to axis-angle rotation

Syntax

axang = rotm2axang(rotm)

Description

axang = rotm2axang(rotm) converts a rotation given as an orthonormal rotation
matrix, rotm, to the corresponding axis-angle representation, axang. The input rotation
matrix must be in the premultiply form for rotations.

Examples

Convert Rotation Matrix to Axis-Angle Rotation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];

axang = rotm2axang(rotm)

axang =

 1.0000 0 0 3.1416

Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

 rotm2axang

2-151

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, returned as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axis, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

See Also
axang2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-152

rotm2eul
Convert rotation matrix to Euler angles

Syntax

eul = rotm2eul(rotm)

eul = rotm2eul(rotm,sequence)

Description

eul = rotm2eul(rotm) converts a rotation matrix, rotm, to the corresponding Euler
angles, eul. The input rotation matrix must be in the premultiply form for rotations. The
default order for Euler angle rotations is 'ZYX'.

eul = rotm2eul(rotm,sequence) converts a rotation matrix to Euler angles. The
Euler angles are specified in the axis rotation sequence, sequence. The default order for
Euler angle rotations is 'ZYX'.

Examples

Convert Rotation Matrix to Euler Angles

rotm = [0 0 1; 0 1 0; -1 0 0];

eulZYX = rotm2eul(rotm)

eulZYX =

 0 1.5708 0

Convert Rotation Matrix to Euler Angles Using ZYZ Axis Order

rotm = [0 0 1; 0 -1 0; -1 0 0];

eulZYZ = rotm2eul(rotm,'ZYZ')

 rotm2eul

2-153

eulZYZ =

 -3.1416 -1.5708 -3.1416

Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.
Example: [0 0 1; 0 1 0; -1 0 0]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

See Also
eul2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-154

rotm2quat
Convert rotation matrix to quaternion

Syntax

quat = rotm2quat(rotm)

Description

quat = rotm2quat(rotm) converts a rotation matrix, rotm, to the corresponding unit
quaternion representation, quat. The input rotation matrix must be in the premultiply
form for rotations.

Examples

Convert Rotation Matrix to Quaternion

rotm = [0 0 1; 0 1 0; -1 0 0];

quat = rotm2quat(rotm)

quat =

 0.7071 0 0.7071 0

Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.

 rotm2quat

2-155

Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

See Also
quat2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-156

rotm2tform
Convert rotation matrix to homogeneous transformation

Syntax

tform = rotm2tform(rotm)

Description

tform = rotm2tform(rotm) converts the rotation matrix, rotm, into a homogeneous
transformation matrix, tform. The input rotation matrix must be in the premultiply
form for rotations. When using the transformation matrix, premultiply it with the
coordinates to be transformed (as opposed to postmultiplying).

Examples

Convert Rotation Matrix to Homogeneous Transformation

rotm = [1 0 0 ; 0 -1 0; 0 0 -1];

tform = rotm2tform(rotm)

tform =

 1 0 0 0

 0 -1 0 0

 0 0 -1 0

 0 0 0 1

Input Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

 rotm2tform

2-157

Rotation matrix, specified as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. The input rotation matrix must
be in the premultiply form for rotations.
Example: [0 0 1; 0 1 0; -1 0 0]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

See Also
tform2rotm

Introduced in R2015a

2 Functions — Alphabetical List

2-158

scatter3

Display point cloud in scatter plot

Syntax

scatter3(pcloud)

scatter3(pcloud,Name,Value)

h = scatter3(___)

Description

scatter3(pcloud) plots the input pcloud point cloud as a 3-D scatter plot in the
current axes handle. If the data contains RGB information for each point, the scatter plot
is colored accordingly.

scatter3(pcloud,Name,Value) provides additional options specified by
one or more Name,Value pair arguments. Name must appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN)

h = scatter3(___) returns the scatter series object, using any of the arguments from
previous syntaxes. Use h to modify properties of the scatter series after it is created.

When plotting ROS point cloud messages, MATLAB follows the standard ROS
convention for axis orientation. This convention states that positive x is forward,
positive y is left, and positive z is up. However, if cameras are used, a second frame
is defined with an “_optical” suffix which changes the orientation of the axis. In this case,
positive z is forward, positive x is right, and positive y is down. MATLAB looks for the
“_optical” suffix and will adjust the axis orientation of the scatter plot accordingly. For
more information, see Axis Orientation on the ROS Wiki.

http://www.ros.org/reps/rep-0103.html#axis-orientation

 scatter3

2-159

Examples

Show 3-D Point Cloud

scatter3(pcloud);

Show 3-D Ppoint Cloud with Uniform Red Points

scatter3(pcloud,'MarkerEdgeColor',[1 0 0]);

Input Arguments

pcloud — Point cloud
PointCloud2 object handle

Point cloud, specified as a PointCloud2 object handle for a 'sensor_msgs/
PointCloud2' ROS message.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MarkerEdgeColor',[1 0 0]

'MarkerEdgeColor' — Marker outline color
'flat' (default) | 'none' | RGB triplet | color string

Marker outline color, specified as one of these values:

• 'flat' — Colors defined by the CData property.
• 'none' — No color, which makes unfilled markers invisible.
• RGB triplet or color string — Specify a custom color.

An RGB triplet is a three-element row vector whose elements specify the intensities of
the red, green, and blue components of the color. The intensities must be in the range
[0,1], for example, [0.4 0.6 0.7]. This table lists RGB triplet values that have
equivalent color strings.

2 Functions — Alphabetical List

2-160

Long Name Short Name RGB Triplet

'yellow' 'y' [1 1 0]

'magenta' 'm' [1 0 1]

'cyan' 'c' [0 1 1]

'red' 'r' [1 0 0]

'green' 'g' [0 1 0]

'blue' 'b' [0 0 1]

'white' 'w' [1 1 1]

'black' 'k' [0 0 0]

Example: [0.5 0.5 0.5]

Example: 'blue'

'Parent' — Parent of axes
axes object

Parent of axes, specified as the comma-separated pair consisting of 'Parent and an axes
object in which to draw the point cloud. By default, the point cloud is plotted in the active
axes.

Outputs

h — Scatter series object
scalar

Scatter series object, returned as a scalar. This value is a unique identifier, which you
can use to query and modify the properties of the scatter object after it is created.

See Also
readRGB | readXYZ

Introduced in R2015a

 search

2-161

search
Search ROS network for parameter names

Syntax
pnames = search(ptree,searchstr)

[pnames,pvalues] = search(ptree,searchstr)

Description
pnames = search(ptree,searchstr) searches within the parameter tree ptree and
returns the parameter names that contain the string searchstr.

[pnames,pvalues] = search(ptree,searchstr) also returns the parameter
values.

Examples
Search for Parameter Names and Values Using Partial String

[pnames,pvalues] = search(ptree,'gravity')

pnames =

 '/gazebo/gravity_x' '/gazebo/gravity_y' '/gazebo/gravity_z'

pvalues =

 [0]

 [0]

 [-9.8000]

Input Arguments
ptree — Parameter tree
ParameterTree object handle

2 Functions — Alphabetical List

2-162

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

searchstr — ROS parameter search string
string

ROS parameter search string. search returns all parameters that contain this string.

Output Arguments

pnames — Parameter values
cell array of strings

Parameter names, returned as a cell array of strings. These strings match the parameter
names in the ROS master that contain the search string.

pvalues — Parameter values
cell array

Parameter values, returned as a cell array. These values vary, but it should match the
value expected for each parameter name in the array. Supported values are

• int32

• logical

• double

• string
• cell array

Currently, Base64–encoded binary data and iso8601 data from ROS are not supported.

See Also
get | rosparam

Introduced in R2015a

 select

2-163

select
Select subset of messages in rosbag

Syntax

bagsel = select(bag)

bagsel = select(bag,Name,Value)

Description

bagsel = select(bag) returns an object, bagsel, that contains all of the messages in
the BagSelection object, bag

This function does not change the contents of the original BagSelection object. It
returns a new object that contains the specified message selection.

bagsel = select(bag,Name,Value) provides additional options specified
by one or more Name,Value pair arguments. Namemust appear inside single
quotes (''). You can specify several name-value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Examples

Create Copy of rosbag

Retrieve a rosbag file.

bag = rosbag(filepath);

Copy the bag using the select function.

bagCopy = select(bag);

Select Message Based on Time

Get the messages from the first full second of the rosbag.

2 Functions — Alphabetical List

2-164

bagMsgs = select(bagMsgs, 'Time', [bagMsgs.StartTime, ...

 bagMsgs.StartTime + 1])

Input Arguments

bag — Message of a rosbag
BagSelection object

All the messages contained within a rosbag, specified as a BagSelection object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

Example: 'MessageType','/geometry_msgs/Point'

'MessageType' — ROS message type
string | cell array

ROS message type, specified as a string or cell array. Multiple message types can be
specified with a cell array of strings.

'Time' — Start and end times
n-by-2 matrix

Start and end times of the rosbag selection, specified as an n-by-2 vector.

'Topic' — ROS topic name
string | cell array

ROS topic name, specified as a string or cell array. Multiple topic names can be specified
with a cell array of strings.

Output Arguments

bagsel — Copy or subset of rosbag messages
BagSelection object

 select

2-165

Copy or subset of rosbag messages, returned as a BagSelection object

See Also
readMessages | rosbag | timeseries

Introduced in R2015a

2 Functions — Alphabetical List

2-166

send
Publish ROS message to topic

Syntax

send(pub,msg)

Description

send(pub,msg) publishes a message to the topic specified by the publisher, pub. This
message can be received by all subscribers in the ROS network that are subscribed to the
topic specified by pub

Examples

Publish Message Using send

send(pub,msg);

Create, Send and Receive Message

Set up a topic, publisher, and subscriber to share and receive a message.

Create a topic and publisher.

msgtype = rostype.geometry_msgs_Point;

pub = rospublisher('position', msgtype);

Create a message.

msg = rosmessage(msgtype);

msg.Y = 2

msg =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'

 send

2-167

 X: 0

 Y: 2

 Z: 0

 Use showdetails to show the contents of the message

Send the message.

send(pub,msg)

Subscribe to the publisher.

sub = rossubscriber('position',msgtype)

sub =

 Subscriber with properties:

 TopicName: '/position'

 MessageType: 'geometry_msgs/Point'

 LatestMessage: [1x1 Point]

 BufferSize: 25

 NewMessageFcn: []

Verify that the latest message received is correct.

sub.LatestMessage

ans =

 ROS Point message with properties:

 MessageType: 'geometry_msgs/Point'

 X: 0

 Y: 2

 Z: 0

 Use showdetails to show the contents of the message

Input Arguments

pub — ROS publisher
Publisher object handle

2 Functions — Alphabetical List

2-168

ROS publisher, specified as a Publisher object handle. You can create the object using
rospublisher.

msg — ROS message
Message object handle

ROS message, specified as a Message object handle.

See Also
rospublisher | rostopic

Introduced in R2015a

 sendTransform

2-169

sendTransform
Send transformation to ROS network

Syntax

sendTransform(tftree,tf)

Description

sendTransform(tftree,tf) broadcasts a transform or array of transforms, tf, to the
ROS network as a TransformationStamped ROS message.

Examples

Send Transformation to ROS Network

tftree = rostf

tf = gettransform(tftree,'/camera_depth_frame','/base_link');

sendTransform(tftree,tf)

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

tf — Transformations between coordinate frames
TransformStamped object handle | array of object handles

Transformations between coordinate frames, returned as a TransformStamped object
handle or as an array of object handles. Transformations are structured as a 3-D
translation (3-element vector) and a 3-D rotation (quaternion).

2 Functions — Alphabetical List

2-170

See Also
getTransform | transform

Introduced in R2015a

 set

2-171

set
Set value of ROS parameter; add new parameter

Syntax

set(ptree,paramname,pvalue)

Description

set(ptree,paramname,pvalue) assigns the value pvalue to the parameter with the
name paramname, which is contained in the parameter tree ptree.

Examples

Set and Get Parameter Value

ptree = rosparam;

set(ptree,'DoubleParam',1.0)

get(ptree,'DoubleParam')

ans =

 1

Input Arguments

ptree — Parameter tree
ParameterTree object handle

Parameter tree, specified as a ParameterTree object handle. Create this object using
the rosparam function.

paramname — ROS parameter name
string

2 Functions — Alphabetical List

2-172

ROS parameter name, specified as a string. This string must match the parameter name
exactly.

pvalue — Parameter value
int32 | logical | char | double | cell array

Parameter value, returned as either a int32, logical, double, char, or cell array.
pvalue matches the value of the specifiedparamname and the supported data type in
ParameterTree. Currently, Base64–encoded binary data and iso8601 data from ROS
are not supported.

See Also
get | rosparam

Introduced in R2015a

 showdetails

2-173

showdetails
Display all ROS message contents

Syntax

details = showdetails(msg)

Description

details = showdetails(msg) gets all data contents of message object msg. The
details are stored in details or displayed on the command line.

Examples

Create Message and View Details

Create a message.

msg = rosmessage(rostype.geometry_msgs_Point);

msg.X = 1;

msg.Y = 2;

msg.Z = 3;

View the message details.

showdetails(msg)

 X : 1

 Y : 2

 Z : 3

Input Arguments

msg — ROS message
Message object handle

2 Functions — Alphabetical List

2-174

ROS message, specified as a Message object handle.

Output Arguments

details — Details of ROS message
string

Details of ROS message, returned as a string.

See Also
rosmessage

Introduced in R2015a

 tform2axang

2-175

tform2axang
Convert homogeneous transformation to axis-angle rotation

Syntax

axang = tform2axang(tform)

Description

axang = tform2axang(tform) converts the rotational component of a homogeneous
transformation, tform, to an axis-angle rotation, axang. The translational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Convert Homogeneous Transformation to Axis-Angle Rotation

tform = [1 0 0 0; 0 0 -1 0; 0 1 0 0; 0 0 0 1];

axang = tform2axang(tform)

axang =

 1.0000 0 0 1.5708

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

2 Functions — Alphabetical List

2-176

Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments

axang — Rotation given in axis-angle form
n-by-4 matrix

Rotation given in axis-angle form, specified as an n-by-4 matrix of n axis-angle rotations.
The first three elements of every row specify the rotation axes, and the last element
defines the rotation angle (in radians).
Example: [1 0 0 pi/2]

See Also
axang2tform

Introduced in R2015a

 tform2eul

2-177

tform2eul
Extract Euler angles from homogeneous transformation

Syntax

eul = tform2eul(tform)

eul = tform2eul(tform, sequence)

Description

eul = tform2eul(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as Euler angles, eul. The translational
components of tform are ignored. The input homogeneous transformation must be in
the premultiply form for transformations. The default order for Euler angle rotations is
'ZYX'.

eul = tform2eul(tform, sequence) extracts the Euler angles, eul, from a
homogeneous transformation, tform, using the specified rotation sequence, sequence.
The default order for Euler angle rotations is 'ZYX'.

Examples

Extract Euler Angles from Homogeneous Transformation Matrix

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];

eulZYX = tform2eul(tform)

eulZYX =

 0 0 3.1416

Extract Euler Angles from Homogeneous Transformation Matrix Using ZYZ Rotation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];

eulZYZ = tform2eul(tform,'ZYZ')

2 Functions — Alphabetical List

2-178

eulZYZ =

 0 -3.1416 3.1416

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

sequence — Axis rotation sequence
'ZYX' (default) | 'ZYZ'

Axis rotation sequence for the Euler angles, specified as one of these strings:

• 'ZYX' (default) – The order of rotation angles is z-axis, y-axis, x-axis.
• 'ZYZ' – The order of rotation angles is z-axis, y-axis, z-axis.

Output Arguments

eul — Euler rotation angles
n-by-3 matrix

Euler rotation angles in radians, returned as an n-by-3 array of Euler rotation angles.
Each row represents one Euler angle set.
Example: [0 0 1.5708]

See Also
eul2tform

Introduced in R2015a

 tform2quat

2-179

tform2quat
Extract quaternion from homogeneous transformation

Syntax

quat = tform2quat(tform)

Description

quat = tform2quat(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as a quaternion, quat. The translational
components of tform are ignored. The input homogeneous transformation must be in the
premultiply form for transformations.

Examples

Extract Quaternion from Homogeneous Transformation

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];

quat = tform2quat(tform)

quat =

 0 1 0 0

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

2 Functions — Alphabetical List

2-180

Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments

quat — Unit quaternion
n-by-4 matrix

Unit quaternion, returned as an n-by-4 matrix containing n quaternions. Each
quaternion, one per row, is of the form q = [w x y z], with w as the scalar number.
Example: [0.7071 0.7071 0 0]

See Also
quat2tform

Introduced in R2015a

 tform2rotm

2-181

tform2rotm
Extract rotation matrix from homogeneous transformation

Syntax

rotm = tform2rotm(tform)

Description

rotm = tform2rotm(tform) extracts the rotational component from a homogeneous
transformation, tform, and returns it as an orthonormal rotation matrix, rotm. The
translational components of tform are ignored. The input homogeneous transformation
must be in the pre-multiply form for transformations. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).

Examples

Convert Homogeneous Transformation to Rotation Matrix

tform = [1 0 0 0; 0 -1 0 0; 0 0 -1 0; 0 0 0 1];

rotm = tform2rotm(tform)

rotm =

 1 0 0

 0 -1 0

 0 0 -1

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

2 Functions — Alphabetical List

2-182

Homogeneous transformation matrix, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the pre-multiply
form for transformations.
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments

rotm — Rotation matrix
3-by-3-by-n matrix

Rotation matrix, returned as a 3-by-3-by-n matrix containing n rotation matrices. Each
rotation matrix has a size of 3-by-3 and is orthonormal. When using the rotation matrix,
premultiply it with the coordinates to be rotated (as opposed to postmultiplying).
Example: [0 0 1; 0 1 0; -1 0 0]

See Also
rotm2tform

Introduced in R2015a

 tform2trvec

2-183

tform2trvec
Extract translation vector from homogeneous transformation

Syntax

trvec = tform2trvec(tform)

Description

trvec = tform2trvec(tform) extracts the Cartesian representation of translation
vector, trvec , from a homogeneous transformation, tform. The rotational components
of tform are ignored. The input homogeneous transformation must be in the premultiply
form for transformations.

Examples

Extract Translation Vector from Homogeneous Transformation

tform = [1 0 0 0.5; 0 -1 0 5; 0 0 -1 -1.2; 0 0 0 1];

trvec = tform2trvec(tform)

trvec =

 0.5000 5.0000 -1.2000

Input Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation, specified by a 4-by-4-by-n matrix of n homogeneous
transformations. The input homogeneous transformation must be in the premultiply
form for transformations.

2 Functions — Alphabetical List

2-184

Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

Output Arguments

trvec — Cartesian representation of a translation vector
n-by-3 matrix

Cartesian representation of a translation vector, returned as an n-by-3 matrix containing
n translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

See Also
trvec2tform

Introduced in R2015a

 timeseries

2-185

timeseries

Creates a time series object for selected message properties

Syntax

[ts,cols] = timeseries(bag)

[ts,cols] = timeseries(bag,property)

[ts,cols] = timeseries(bag,property,...,propertyN)

Description

[ts,cols] = timeseries(bag) creates a time series for all numeric and scalar
message properties. The function evaluates each message in the current BagSelection
object, bag, as ts. The cols output argument stores property names as a cell array of
strings.

The returned time series object is memory-efficient because it stores only particular
message properties instead of whole messages.

[ts,cols] = timeseries(bag,property) creates a time series for a specific
message property, property. Property names can also be nested, for example,
'Pose.Pose.Position.X' for the x-axis position of a robot.

[ts,cols] = timeseries(bag,property,...,propertyN) creates a time series
for a range specific message properties. Each property is a different column in the time
series object.

2 Functions — Alphabetical List

2-186

Examples

Create Time Series from Entire Bag Selection

ts = timeseries(bagMsgs);

Create Time Series with Single Property

ts = timeseries(bagMsgs, 'Pose.Pose.Position.X');

Create Time Series with Multiple Properties

ts = timeseries(bagMsgs, 'Twist.Twist.Angular.X', ...

 'Twist.Twist.Angular.Y', 'Twist.Twist.Angular.Z')

Input Arguments

bag — Bag selection
BagSelection object handle

Bag selection, specified as a BagSelection object handle. You can get a bag selection by
calling rosbag.

property — Property names
string

Property names, specified as a string. Multiple properties can be specified. Each property
name is a separate input and represents a different column in the time series object.

Output Arguments

ts — Time series
Time object handle

Time series, returned as a Time object handle.

cols — List of property names
cell array of strings

List of property names, returned as a cell array of strings.

 timeseries

2-187

More About
• “Time Series Basics”

See Also
readMessages | rosbag | select

Introduced in R2015a

2 Functions — Alphabetical List

2-188

transform
Transform message entities into target coordinate frame

Syntax

tfentity = transform(tftree,targetframe,entity)

Description

tfentity = transform(tftree,targetframe,entity) retrieves the
transformation between targetframe and entity and applies it to entity, a ROS
message of a specific type. tftree is the full transformation tree containing known
transformations between entities. If the transformation from entity to targetframe
does not exist, MATLAB thows an error.

Examples

Transform PointStamped Message

Define a point in the coordinate frame of a camera.

pt = rosmessage('geometry_msgs/PointStamped');

 pt.Header.FrameId = '/camera_depth_frame';

 pt.Point.X = 3;

 pt.Point.Y = 1.5;

 pt.Point.Z = 0.2;

Transform the point to the base_link frame.

tfpt = transform(tftree, '/base_link', pt)

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

 transform

2-189

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame that entity transforms into, specified as a string. You can view
the available frames for transformation calling tftree.AvailableFrames.

entity — Initial message entity
Message object handle

Initial message entity, specified as a Message object handle.

Supported messages are:

• geometry_msgs/PointStamped

• geometry_msgs/PoseStamped

• geometry_msgs/QuaternionStamped

• geometry_msgs/Vector3Stamped

• sensor_msgs/PointCloud2

Output Arguments

tfentity — Transformed entity
Message object handle

Transformed entity, returned as a Message object handle.

See Also
getTransform | waitForTransform

Introduced in R2015a

2 Functions — Alphabetical List

2-190

trvec2tform
Convert translation vector to homogeneous transformation

Syntax

tform = trvec2tform(trvec)

Description

tform = trvec2tform(trvec) converts the Cartesian representation of a translation
vector, trvec, to the corresponding homogeneous transformation, tform. When using
the transformation matrix, premultiply it with the coordinates to be transformed (as
opposed to postmultiplying).

Examples

Convert Translation Vector to Homogeneous Transformation

trvec = [0.5 6 100];

tform = trvec2tform(trvec)

tform =

 1.0000 0 0 0.5000

 0 1.0000 0 6.0000

 0 0 1.0000 100.0000

 0 0 0 1.0000

Input Arguments

trvec — Cartesian representation of a translation vector
n-by-3 matrix

 trvec2tform

2-191

Cartesian representation of a translation vector, specified as an n-by-3 matrix containing
n translation vectors. Each vector is of the form t = [x y z].
Example: [0.5 6 100]

Output Arguments

tform — Homogeneous transformation
4-by-4-by-n matrix

Homogeneous transformation matrix, returned as a 4-by-4-by-n matrix of n homogeneous
transformations. When using the rotation matrix, premultiply it with the coordinates to
be rotated (as opposed to postmultiplying).
Example: [0 0 1 0; 0 1 0 0; -1 0 0 0; 0 0 0 1]

See Also
tform2trvec

Introduced in R2015a

2 Functions — Alphabetical List

2-192

waitForTransform

Wait until a transformation is available

Syntax

waitForTransform(tftree,targetframe,sourceframe)

waitForTransform(tftree,targetframe,sourceframe,timeout)

Description

waitForTransform(tftree,targetframe,sourceframe) waits until the
transformation between targetframe and sourceframe is available in the
transformation tree, tftree. This functions disables the command prompt until a
transformation becomes available on the ROS network.

waitForTransform(tftree,targetframe,sourceframe,timeout) specifies a
timeout period in seconds. If the transformation does not become available, MATLAB
displays an error, but continues running the current program.

Examples

Wait for Transform

waitForTransform(tftree,'/camera_depth_frame','/base_link');

Specify Timeout of Five Seconds to Wait for Transform

waitForTransform(tftree,'/camera_depth_frame','/base_link',5);

Input Arguments

tftree — ROS transformation tree
TransformationTree object handle

 waitForTransform

2-193

ROS transformation tree, specified as a TransformationTree object handle. You can
create a transformation tree by calling the rostf function.

targetframe — Target coordinate frame
string

Target coordinate frame, specified as a string. You can view the available frames for
transformation by calling tftree.AvailableFrames.

sourceframe — Initial coordinate frame
string

Initial coordinate frame, specified as a string. You can view the available frames for
transformation using tftree.AvailableFrames.

timeout — Timeout period
scalar in seconds

Timeout period, specified as a scalar in seconds. If the transformation does not become
available, MATLAB displays an error, but continues running the current program.

See Also
getTransform | receive | transform

Introduced in R2015a

2 Functions — Alphabetical List

2-194

writeBinaryOccupancyGrid
Write values from grid to ROS message

Syntax

writeBinaryOccupancyGrid(msg,map)

Description

writeBinaryOccupancyGrid(msg,map) writes occupancy values and other
information to the ROS message, msg, from the binary occupancy grid, map.

Examples

Write Binary occupancy Grid Information to ROS Message

map = robotics.BinaryOccupancyGrid(randi([0,1], 10));

msg = rosmessage('nav_msgs/OccupancyGrid');

writeBinaryOccupancyGrid(msg, map);

Input Arguments

map — Binary occupancy grid
BinaryOccupancyGrid object handle

Binary occupancy grid, specified as a BinaryOccupancyGrid object handle. map is
converted to a 'nav_msgs/OccupancyGrid' message on the ROS network. map is
an object with a grid of binary values, where 1 indicates an occupied location and 0
indications an unoccupied location.

msg — 'nav_msgs/OccupancyGrid' ROS message
OccupancyGrid object handle

'nav_msgs/OccupancyGrid' ROS message, specified as a OccupancyGrid object
handle.

 writeBinaryOccupancyGrid

2-195

See Also
robotics.BinaryOccupancyGrid | readBinaryOccupancyGrid

Introduced in R2015a

2 Functions — Alphabetical List

2-196

writeImage
Write MATLAB image to ROS image message

Syntax

writeImage(msg,img)

writeImage(msg,img,alpha)

Description

writeImage(msg,img) converts the MATLAB image, img, to a message object and
stores the ROS compatible image data in the message object, msg. The message must be
a 'sensor_msgs/Image' message. 'sensor_msgs/CompressedImage' messages are
not supported.

writeImage(msg,img,alpha) converts the MATLAB image, img to a message object.
If the image encoding supports an alpha channel (rgba or bgra family), specify this
alpha channel in alpha. Alternatively, the input image can store the alpha channel as its
fourth channel.

Examples

Write Image to Message

msg = rosmessage('sensor_msgs/Image')

writeImage(msg,img);

Write Message Using Alpha Channel

writeImage(msg,img,alpha);

Input Arguments

msg — ROS image message
Image object handle

 writeImage

2-197

'sensor_msgs/Image' ROS image message, specified as an Image object handle.
'sensor_msgs/Image' image messages are not supported.

img — Image
grayscale image matrix | RBG image matrix | m-by-n-by-3 array

Image, specified as a matrix representing a grayscale or RGB image or as am-by-n-by-3
array, depending on the sensor image.

alpha — Alpha channel
uint8 grayscale image

Alpha channel, specified as a uint8 grayscale image. Alpha must be the same size and
data type as img.

More About

Tips

You must specify encoding of the input image in the 'Encoding' property of the image
message. If you do not specify the image encoding before calling the function, the default
encoding, rgb8, is used (3-channel RGB image with uint8 values).

All encoding types supported for the readImage are also supported in this function. For
more information on supported encoding types and their representations in MATLAB,
see readImage.

Bayer-encoded images (bayer_rggb8, bayer_bggr8, bayer_gbrg8, bayer_grbg8 and
their 16-bit equivalents) must be given as 8-bit or 16-bit single-channel images or they do
not encode.

See Also
readImage

Introduced in R2015a

3

Methods — Alphabetical List

3 Methods — Alphabetical List

3-2

copy

Class: robotics.BinaryOccupancyGrid
Package: robotics

Copy array of handle objects

Syntax

b = copy(a)

Description

b = copy(a) copies each element in the array of handles, a, to the new array of
handles, b.

The copy method does not copy dependent properties. MATLAB does not call copy
recursively on any handles contained in property values. MATLAB does not call the class
constructor or property set methods during the copy operation.

b has the same number of elements and is the same size and class ofa. b is the same
class as a. If a is empty, b is also empty. If a is heterogeneous, b is also heterogeneous.
If a contains deleted handles, then copy creates deleted handles of the same class in b.
Dynamic properties and listeners associated with objects in a are not copied to objects in
a.

copy is a sealed and public method in class matlab.mixin.Copyable.

Input Arguments

a — Oject array
handle

Object array, specified as a handle.

 copy

3-3

Output Arguments

b — Object array containing copies of the objects in a
handle

Object array containing copies of the object in a, specified as a handle.

See Also
robotics.BinaryOccupancyGrid

Introduced in R2015a

3 Methods — Alphabetical List

3-4

getOccupancy
Class: robotics.BinaryOccupancyGrid
Package: robotics

Get occupancy value for one or more positions

Syntax

occval = getOccupancy(map,xy)

occval = getOccupancy(map,ij,'grid')

Description

occval = getOccupancy(map,xy) returns an array of occupancy values for an input
array of world coordinates, xy. Each row of xy is a point in the world, represented as an
[x y] coordinate pair. occval is the same length as xy and a single column array. An
occupied location is represented as true (1), and a free location is represented as false
(0).

occval = getOccupancy(map,ij,'grid') returns an array of occupancy values
based on a [rows cols]input array of grid positions, ij.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

 getOccupancy

3-5

Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.
Data Types: double

Output Arguments

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij.

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

3 Methods — Alphabetical List

3-6

grid2world
Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert grid indices to world coordinates

Syntax

xy = grid2world(map,ij)

Description

xy = grid2world(map,ij) converts a [row col] array of grid indices, ij, to an
array of world coordinates, xy.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

Output Arguments

xy — World coordinates
n-by-2 vertical array

 grid2world

3-7

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.world2grid

Introduced in R2015a

3 Methods — Alphabetical List

3-8

inflate
Class: robotics.BinaryOccupancyGrid
Package: robotics

Inflate each occupied grid location

Syntax

inflate(map,radius)

inflate(map,gridradius,'grid')

Description

inflate(map,radius) inflates each occupied position of the map by the radius given
in meters. radius is rounded up to the nearest cell equivalent based on the resolution of
the map. Every cell within the radius is set to true (1).

inflate(map,gridradius,'grid') inflates each occupied position by the radius
given in number of cells.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

radius — Dimension the defines how much to inflate occupied locations
scalar

Dimension that defines how much to inflate occupied locations, specified as a scalar.
radius is rounded up to the nearest cell value.

Data Types: double

 inflate

3-9

gridradius — Dimension the defines how much to inflate occupied locations
positive scalar

Dimension that defines how much to inflate occupied locations, specified as a positive
scalar. gridradius is the number of cells to inflate the occupied locations.

Data Types: double

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.setOccupancy

Introduced in R2015a

3 Methods — Alphabetical List

3-10

setOccupancy
Class: robotics.BinaryOccupancyGrid
Package: robotics

Set occupancy value for one or more positions

Syntax

setOccupancy(map,xy,occval)

setOccupancy(map,ij,occval,'grid')

Description

setOccupancy(map,xy,occval) assigns occupancy values, occval, to the input array
of world coordinates, xy in the occupancy grid, map. Each row of the array, xy, is a point
in the world and is represented as an [x y] coordinate pair. occval is either a scalar or
a single column array of the same length as xy . An occupied location is represented as
true (1), and a free location is represented as false (0).

setOccupancy(map,ij,occval,'grid') assigns occupancy values, occval, to the
input array of grid indices, ij, as [rows cols].

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

 setOccupancy

3-11

Data Types: double

ij — Grid positions
n-by-2 vertical array

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.
Data Types: double

occval — Occupancy values
n-by-1 vertical array

Occupancy values of the same length as either xy or ij, returned as an n-by-1 vertical
array, where n is the same n in either xy or ij.

Examples

Set Occupancy Values

Set the occupancy of grid locations using setOccupancy.

Initialize an occupancy grid object using BinaryOccupancyGrid.

map = robotics.BinaryOccupancyGrid(10,10);

Set the occupancy of a specific location using setOccupancy.

setOccupancy(map, [8 8], 1);

Set the occupancy of an array of locations.

[x,y] = meshgrid(2:5);

setOccupancy(map, [x(:) y(:)],1);

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.getOccupancy

Introduced in R2015a

3 Methods — Alphabetical List

3-12

show
Class: robotics.BinaryOccupancyGrid
Package: robotics

Show occupancy grid values

Syntax

show(map)

show(map, 'grid')

show(___ ,'Parent',parent)

h = show(map, ___)

Description

show(map) displays the binary occupancy grid map in the current axes, with the axes
labels representing the world coordinates.

show(map, 'grid') displays the binary occupancy grid map in the current axes, with
the axes labels representing the grid coordinates.

show(___ ,'Parent',parent) sets the specified axes handle parent to the axes,
using any of the arguments from previous syntaxes.

h = show(map, ___) returns the figure object handle created by show.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

 show

3-13

parent — Axes properties
handle

Axes properties, specified as a handle.

See Also
robotics.BinaryOccupancyGrid

Introduced in R2015a

3 Methods — Alphabetical List

3-14

world2grid
Class: robotics.BinaryOccupancyGrid
Package: robotics

Convert world coordinates to grid indices

Syntax

ij = world2grid(map,xy)

Description

ij = world2grid(map,xy) converts an array of world coordinates, xy, to a [rows
cols] array of grid indices, ij.

Input Arguments

map — Map representation
BinaryOccupancyGrid object

Map representation, specified as a robotics.BinaryOccupancyGrid object. This object
represents the environment of the robot. The object contains a matrix grid with binary
values indicating obstacles as true (1) and free locations as false (0).

xy — World coordinates
n-by-2 vertical array

World coordiantes, specified as an n-by-2 vertical array of [x y] pairs, where n is the
number of world coordinates.

Output Arguments

ij — Grid positions
n-by-2 vertical array

 world2grid

3-15

Grid positions, specified as an n-by-2 vertical array of [i j] pairs in [rows cols]
format, where n is the number of grid positions.

See Also
robotics.BinaryOccupancyGrid | robotics.BinaryOccupancyGrid.grid2world

Introduced in R2015a

3 Methods — Alphabetical List

3-16

findpath
Class: robotics.PRM
Package: robotics

Find path between start and goal points on roadmap

Syntax

xy = findpath(prm,start,goal)

Description

xy = findpath(prm,start,goal) finds an obstacle-free path between start and
goal locations within prm, a roadmap object that contains a network of connected points.

If any properties of prm change, or if the roadmap is not created, update is called.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

start — Start location of path
2-by-1 vector

Start location of path, specified as a 2-by-1 vector representing an [x y] pair.

Example: [0 0]

goal — Final location of path
2-by-1 vector

Final location of path, specified as a 2-by-1 vector representing an [x y] pair.

Example: [10 10]

 findpath

3-17

Output Arguments

xy — Waypoints for a path between start and goal
2-by-n column vector

Waypoints for a path between start and goal, specified as a 2-by-n column vector of [x
y] pairs, where n is the number of waypoints. These pairs represent the solved path from
the start and goal locations, given the roadmap from the prm input object.

See Also
robotics.PRM | robotics.PRM.show | robotics.PRM.update

Introduced in R2015a

3 Methods — Alphabetical List

3-18

show
Class: robotics.PRM
Package: robotics

Show map, roadmap, and path

Syntax

show(prm)

show(prm,Name,Value)

Description

show(prm) shows the map and the roadmap, specified as prm in a figure window. If no
roadmap exists, update is called. If a path is computed before calling show, the path is
also plotted on the figure.

show(prm,Name,Value) sets the specified Value to the property Name.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (' '). You can specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

'Parent' — Axes handle
handle

 show

3-19

Axes handle that specifies the parent of the figure object created by show, specified as the
comma-separated pair consisting of 'Parent' and a handle.

'Map' — Map display option
'on' (default) | 'off'

Map display option, specified as the comma-separated pair consisting of 'Map' and
either 'on' or 'off'.

'Roadmap' — Roadmap display option
‘on’ (default) | 'off'

Roadmap display option, specified as the comma-separated pair consisting of 'Roadmap'
and either 'on' or 'off'.

'Path' — Path display option
‘on’ (default) | 'off'

A string to turn on or off the display of the path, whose value is 'on' or 'off'.

See Also
| |

Related Examples
• “Path Following for a Differential Drive Robot”

Introduced in R2015a

3 Methods — Alphabetical List

3-20

update
Class: robotics.PRM
Package: robotics

Create or update roadmap

Syntax

update(prm)

Description

update(prm) creates a roadmap if called for the first time after creating the PRM object,
prm. Subsequent calls of update recreate the roadmap by resampling the map. update
creates the new roadmap using the Map, NumNodes, and ConnectionDistance property
values specified in prm.

Input Arguments

prm — Roadmap path planner
PRM object

Roadmap path planner, specified as a robotics.PRM object.

See Also
robotics.PRM | robotics.PRM.findpath | robotics.PRM.show

Introduced in R2015a

 clone

3-21

clone
Class: robotics.PurePursuit
Package: robotics

Create PurePursuit object with same property values

Syntax

copy = clone(controller)

Description

copy = clone(controller) creates another instance of the System object,
controller, with the same property values. If the input object is locked, the clone
method creates a copy that is also locked and has states initialized to the same values as
the original. If the input object is not locked, the clone method creates a new unlocked
object with uninitialized states.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

Output Arguments

copy — Pure pursuit controller
PurePursuit object

Copy of pure pursuit controller, returned as a PurePursuit object.

See Also
robotics.PurePursuit

3 Methods — Alphabetical List

3-22

Introduced in R2015a

 isLocked

3-23

isLocked
Class: robotics.PurePursuit
Package: robotics

Check locked states (logical)

Syntax

status = isLocked(controller)

Description

status = isLocked(controller) returns a logical value, status, which indicates
whether input attributes and nontunable properties are locked for the object,
controller. For the PurePursuit class, the only nontunable property is Waypoints.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

Output Arguments

status — Locked status of object
Boolean

Locked status of the object input attributes and nontunable properties, returned as a
Boolean.

See Also
robotics.PurePursuit | robotics.PurePursuit.release | robotics.PurePursuit.step

3 Methods — Alphabetical List

3-24

Introduced in R2015a

 release

3-25

release
Class: robotics.PurePursuit
Package: robotics

Allow property value changes

Syntax

release(controller)

Description

release(controller) resets the internal properties of the controller object and
unlocks the object so that you can modify nontunable properties. For the PurePursuit
class, the only nontunable property is Waypoints. After release is called, you can
change the properties and input characteristics of controller.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

See Also
robotics.PurePursuit | robotics.PurePursuit.isLocked | robotics.PurePursuit.step

Introduced in R2015a

3 Methods — Alphabetical List

3-26

reset
Class: robotics.PurePursuit
Package: robotics

Reset internal states to default

Syntax

reset(controller)

Description

reset(controller) resets the internal system properties of the controller object.
All properties specific to the PurePursuit object are kept the same and the locked
status of the object does not change.

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

See Also
robotics.PurePursuit | robotics.PurePursuit.release

Introduced in R2015a

 step

3-27

step
Class: robotics.PurePursuit
Package: robotics

Compute linear and angular velocity control commands

Syntax

[vel, angvel] = step(controller,pose)

Description

[vel, angvel] = step(controller,pose) processes the robot’s position and
orientation, pose, as [x y theta], and outputs the linear velocity, vel, and angular
velocity, angvel, based on the specified controller .

Input Arguments

controller — Pure pursuit controller
PurePursuit object

Pure pursuit controller, specified as a PurePursuit object.

pose — Position and orientation of robot
3-by-1 vector in the form [x y theta]

Position and orientation of robot, specified as a 3-by-1 vector in the form [x y theta].
The robot’s pose is an x and y position with angular orientation (in radians) measured
from the x-axis.

Output Arguments

vel — Linear velocity
scalar in meters per second

3 Methods — Alphabetical List

3-28

Linear velocity, specifed as a scalar in meters per second.
Data Types: double

angvel — Angular velocity
scalar in radians per second

Angular velocity, specified as a scalar in radians per second.
Data Types: double

See Also
robotics.PurePursuit

Introduced in R2015a

 robotics.VectorFieldHistogram.clone

3-29

robotics.VectorFieldHistogram.clone

Class: robotics.VectorFieldHistogram
Package: robotics

Create VectorFieldHistogram object with same property values

Syntax

vfhCopy = clone(vfh)

Description

vfhCopy = clone(vfh) creates another instance of the VectorFieldHistogram
object with the same properties.

Input Arguments

vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

Output Arguments

vfhCopy — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, returned as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

3 Methods — Alphabetical List

3-30

Examples

Copy VectorFieldHistogram Object

Create aVectorFieldHistogram object.

vfh = robotics.VectorFieldHistogram

vfh =

 System: robotics.VectorFieldHistogram

 Properties:

 NumAngularSectors: 180

 DistanceLimits: [0.05 2]

 RobotRadius: 0.1

 SafetyDistance: 0.1

 MinTurningRadius: 0.1

 TargetDirectionWeight: 5

 CurrentDirectionWeight: 2

 PreviousDirectionWeight: 2

 HistogramThresholds: [3 10]

Create a copy with the same properties.

vfh2 = clone(vfh)

vfh2 =

 System: robotics.VectorFieldHistogram

 Properties:

 NumAngularSectors: 180

 DistanceLimits: [0.05 2]

 RobotRadius: 0.1

 SafetyDistance: 0.1

 MinTurningRadius: 0.1

 TargetDirectionWeight: 5

 CurrentDirectionWeight: 2

 PreviousDirectionWeight: 2

 robotics.VectorFieldHistogram.clone

3-31

 HistogramThresholds: [3 10]

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.reset |
robotics.VectorFieldHistogram.show

Introduced in R2015b

3 Methods — Alphabetical List

3-32

robotics.VectorFieldHistograms.reset
Reset internal states to default

Syntax

reset(vfh)

Description

reset(vfh) resets the internal states of the VectorFieldHistogram object to their
initial values. All properties specific to the object are kept the same.

Input Arguments

vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

Examples

Reset VectorFieldHistogram Object

reset(vfh)

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.clone |
robotics.VectorFieldHistogram.step

Introduced in R2015b

 robotics.VectorFieldHistogram.show

3-33

robotics.VectorFieldHistogram.show
Class: robotics.VectorFieldHistogram
Package: robotics

Display VectorFieldHistogram information in figure window

Syntax

show(vfh)

show(vfh,'Parent',parent)

h = show(___)

Description

show(vfh) shows histograms calculated by the VFH+ algorithm in a figure window. The
figure also includes the parameters of the VectorFieldHistrogram object and range
values from the last step input.

show(vfh,'Parent',parent) sets the specified axes handle, parent, to the axes.

h = show(___) returns the figure object handle created by show using any of the
arguments from the previous syntaxes.

Examples

Show Sample Data from VectorFieldHistogram Object

Create a vector field histogram object.

vfh = robotics.VectorFieldHistogram;

targetDir = 0;

Create sample laser scan data input.

ranges = 10*ones(1,300);

3 Methods — Alphabetical List

3-34

ranges(1,110:150) = 1.0;

angles = linspace(-pi/2,pi/2,300);

Compute an obstacle-free steering direction.

steeringDir = step(vfh,ranges,angles,targetDir);

Show the data from the VectorFieldHistogram object.

show(vfh);

Input Arguments

vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

parent — Axes properties
handle

Axes properties, specified as a handle.

Output Arguments

h — Axes handles for VFH algorithm display
Axes array

Axes handles for VFH algorithm display, specified as an Axes array. The VFH histogram
and HistogramThresholds are shown in the first axes. The binary histogram, range
sensor readings, target direction, and steering directions are shown in the second axes.

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.step

Introduced in R2015b

 robotics.VectorFieldHistogram.step

3-35

robotics.VectorFieldHistogram.step

Class: robotics.VectorFieldHistogram
Package: robotics

Find obstacle-free steering direction

Syntax

steeringDir = step(vfh,ranges,angles,targetDir)

Description

steeringDir = step(vfh,ranges,angles,targetDir) finds an obstacle-free
steering direction using the VFH+ algorithm for input vectors, ranges and angles. The
algorithm parameters are defined in the vfh object. A target direction is given based on
the target location.

Input Arguments

vfh — Vector field histogram algorithm
VectorFieldHistogram object

Vector field histogram algorithm, specified as a VectorFieldHistogram object. This
object contains all the parameters for tuning the VFH+ algorithm.

ranges — Range values from scan data
vector

Range values from scan data, specified as a vector in meters. These range values are
distances from a sensor at given angles. The vector must be the same length as the
corresponding angles vector.

angles — Angle values from scan data
vector

3 Methods — Alphabetical List

3-36

Angle values from scan data, specified as a vector in radians. These angle values are
the specific angles of the given ranges. The vector must be the same length as the
corresponding ranges vector.

targetDir — Target direction for robot
scalar

Target direction for the robot, specified as a scalar in radians. The forward direction of
the robot is considered zero radians, with positive angles measured counterclockwise.

Output Arguments

steeringDir — Steering direction for robot
scalar

Steering direction for the robot, specified as a scalar in radians. This obstacle-free
direction is calculated based on the VFH+ algorithm. The forward direction of the robot is
considered zero radians, with positive angles measured counterclockwise.

Examples

Find Steering Direction of Vector Field Histogram

Create a vector field histogram object.

vfh = robotics.VectorFieldHistogram;

targetDir = 0;

Create sample laser scan data input.

ranges = 10*ones(1, 300);

ranges(1, 70:150) = 1.0;

angles = linspace(-pi/2, pi/2, 300);

Compute an obstacle-free steering direction.

steeringDir = step(vfh,ranges,angles, targetDir);

Show the data from the VectorFieldHistogram object.

 robotics.VectorFieldHistogram.step

3-37

show(vfh);

See Also
robotics.VectorFieldHistogram | robotics.VectorFieldHistogram.reset |
robotics.VectorFieldHistogram.show

Introduced in R2015b

4

Blocks — Alphabetical List

4 Blocks — Alphabetical List

4-2

Blank Message

Create blank message using specified message type

Library

Robotics System Toolbox

robotlib

Description

The Blank Message block creates a Simulink® nonvirtual bus corresponding to the
selected ROS message type. On each sample hit, the block emits a blank or “zero” signal
for the designated message type. All elements of the bus are initialized to 0, and the
length of the variable-length arrays are initialized to 0 as well.

 Blank Message

4-3

Dialog Box

Message type
Message type for the blank message. Use the Select button to select from a full list
of supported ROS messages. You can also use the rostype function in MATLAB to
view the list of supported ROS messages.

Sample time
Interval between times that the Blank Message block output can change during
simulation.

Default: inf

This default value indicates that the block output can never change. Using this value
speeds simulation and code generation by eliminating the need to recompute the
block output.

4 Blocks — Alphabetical List

4-4

For more information, see “ Specify Sample Time”.

See Also
Publish | Subscribe

Related Examples
• “Virtual and Nonvirtual Buses”

Introduced in R2015a

 Get Parameter

4-5

Get Parameter

Get values from ROS parameter server

Library

Robotics System Toolbox

robotlib

Description

The Get Parameter block outputs the value of the specified ROS parameter. The block
uses the ROS node of the Simulink model to connect to the ROS network. This node is
created when you run the model and is deleted when the model terminates. If the model
does not have a node, the block creates one.

On each sample hit, the block checks the ROS parameter server for the specified ROS
parameter and outputs its value.

The Value output shows the parameter value from the parameter server.

The ErrorCode output is a numerical value that indicates the status of the ROS
parameter:

• 0 — ROS parameter retrieved successfully. The retrieved value is output in Value.
• 1 — No ROS parameter with specified name found. If there is no known value, Value

is set to the last received value or to Initial value.
• 2 — ROS parameter retrieved, but its type is different than the specified Data type.

If there is no known value, Value is set to the last received value or to Initial value.

4 Blocks — Alphabetical List

4-6

Dialog Box

Source

 Get Parameter

4-7

Source of the parameter name that you want to access.

• Select from ROS network — Use Select to select a parameter name. The
Data type parameter is set automatically. You must be connected to a ROS
network.

• Specify your own — Enter a parameter name in Name and specify its data
type in Data type. You must match a parameter name exactly.

Name
The name of the parameter to get from the ROS parameter server. When Source is
set to Select from ROS network, use Select to select an existing parameter. You
must be connected to a ROS network to get a list of parameters. Otherwise, specify
the parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names
have these characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or

forward slashes (/).

Data type
Data type of your parameter.

• double

• int32

• boolean

If you set Source to Select from ROS network, then Data type is disabled and
the data type is selected automatically.

Initial value
Output of Value when an error occurs and no valid value has been received from the
parameter server. The data type must match the specified Data type.

Sample time
Interval between times that the Get Parameter block output can change during
simulation. In simulation, the sample time follows simulation time and not actual
wall-block time.

Default: -1

4 Blocks — Alphabetical List

4-8

This default value indicates that the block sample time is inherited. See “ Specify
Sample Time”.

Show ErrorCode output port
Select this check box to enable ErrorCode output. When you clear this check box,
the ErrorCode output is removed from the block.

See Also
Set Parameter

External Websites
• ROS Parameter Server
• ROS Graph Names

Introduced in R2015b

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Names

 Publish

4-9

Publish

Send messages to ROS network

Library

Robotics System Toolbox

robotlib

Description

The Publish block takes in as its input a Simulink nonvirtual bus that corresponds to the
specified ROS message type and publishes it to the ROS network. It uses the node of the
Simulink model to create a ROS publisher for a specific topic. This node is created when
the model runs and is deleted when the model terminates. If the model does not have a
node, the block creates one.

On each sample hit, the block converts the Msg input from a Simulink bus signal to a
ROS message and publishes it. The block does not distinguish whether the input is a
new message but merely publishes it on every sample hit. For simulation, this input is a
MATLAB ROS message and in code generation, it is a C++ ROS message.

4 Blocks — Alphabetical List

4-10

Dialog Box

Topic source
This selector determines where you get the topic name that you want to subscribe to.

• Select from ROS network — Use the Select button to select a topic. You must
be connected to a ROS network.

 Publish

4-11

• Specify your own — Enter a topic name in Topic. You must match a topic
name exactly.

Topic
The ROS topic to publish to, specified as a string. When Topic source is set to
Select from ROS network, use theSelect button to select from the ROS network.
You must be connected to a ROS network to get a list of topics. Otherwise, specify the
topic you want.

Topic name strings must follow the rules of ROS topic names. Valid names have the
following characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([a-z|A-Z]), underscores(_), or forward

slashes (/).

Message type
Message type for the Topic specified. If you select a topic from the ROS network, the
message type is selected for you. Otherwise, use Select button to select from a full
list of supported ROS messages. You can also use the rostype function in MATLAB
to view the list of messages.

Tips

You can also set the addresses for the ROS master and node host by clicking the
Configure network addresses link in the dialog box.

See Also
Blank Message | Subscribe

Related Examples
• “Virtual and Nonvirtual Buses”

More About
• “Simulink and ROS Interaction”

Introduced in R2015a

4 Blocks — Alphabetical List

4-12

Set Parameter

Set values on ROS parameter server

Library

Robotics System Toolbox

robotlib

Description

The Set Parameter block sets the Value input to the specified name on the ROS
parameter server. The block uses the ROS node of the Simulink model to connect to the
ROS network. This node is created when you run the model and is deleted when the
model terminates. If the model does not have a node, the block creates one.

 Set Parameter

4-13

Dialog Box

Source
Source of the parameter name that you want to access.

• Select from ROS network — Use Select to select a parameter name. The
Data type parameter is set automatically. You must be connected to a ROS
network.

4 Blocks — Alphabetical List

4-14

• Specify your own — Enter a parameter name in Name and specify its data
type in Data type. You must match a parameter name exactly.

Name
The name of the parameter to get from the ROS parameter server. When Source is
set to Select from ROS network, use Select to select an existing parameter. You
must be connected to a ROS network to get a list of parameters. Otherwise, specify
the parameter and data type.

Parameter name strings must follow the rules of ROS graph names. Valid names
have these characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([0-9|a-z|A-Z]), underscores(_), or

forward slashes (/).

Data type
Data type of your parameter.

• double

• int32

• boolean

If you set Source to Select from ROS network, then Data type is disabled and
the data type is selected automatically.

See Also
Get Parameter

External Websites
• ROS Parameter Servers
• ROS Graph Names

Introduced in R2015b

http://wiki.ros.org/Parameter%20Server
http://wiki.ros.org/Names

 Subscribe

4-15

Subscribe

Receive messages from ROS network

Library

Robotics System Toolbox

robotlib

Description

Subscribe creates a Simulink nonvirtual bus that corresponds to the specified ROS
message type. The block uses the node of the Simulink model to create a ROS subscriber
for a specific topic. This node is created when the model runs and is deleted when the
model terminates. If the model does not have a node, the block creates one.

On each sample hit, the block checks if a new message available on the specific topic. If a
new message is available, the block retrieves the message and converts it to a Simulink
bus signal. The Msg outputs this new message. If a new message is not available, Msg
outputs the last received ROS message. If there has not been a received message since
the start of the simulation, Msg outputs a blank message.

4 Blocks — Alphabetical List

4-16

Dialog Box

Topic source
This selector determines where you get the topic name that you want to subscribe to.

 Subscribe

4-17

• Select from ROS network — Use the Select button to select a topic. You must
be connected to a ROS network.

• Specify your own — Enter a topic name in Topic. You must match a topic
name exactly.

Topic
The ROS topic to publish to, specified as a string. When Topic source is set to
Select from ROS network, use theSelect button to select from the ROS network.
You must be connected to a ROS network to get a list of topics. Otherwise, specify the
topic you want.

Topic name strings must follow the rules of ROS topic names. Valid names have the
following characteristics:

• The first character is an alpha character ([a-z|A-Z]), tilde (~), or forward slash (/).
• Subsequent characters are alphanumeric ([a-z|A-Z]), underscores(_), or forward

slashes (/).

Message type
Message type for the Topic specified. If you select a topic from the ROS network, the
message type is selected for you. Otherwise, use Select button to select from a full
list of supported ROS messages. You can also use the rostype function in MATLAB
to view the list of messages.

Sample time
Interval between times that the Subscribe block output can change during
simulation. In simulation, the sample time follows simulation time and not actual
wall-block time.

Default: -1

This default value indicates that the block sample time is inherited.

For more information about the inherited sample time type, see “ Specify Sample
Time”.

Tips

You can also Configure Network Addresses by clicking the link in the dialog box. This
allows you to set the addresses for the 'ROS Master' and 'Node Host'.

4 Blocks — Alphabetical List

4-18

See Also
Blank Message | Publish

Related Examples
• “Virtual and Nonvirtual Buses”

More About
• “Simulink and ROS Interaction”

Introduced in R2015a

